夏熱冬冷地區(qū)墻體保溫數(shù)值模擬研究及實驗驗證
[Abstract]:Energy is an important material basis for the survival and development of a country, and is closely related to the progress of social civilization. With the continuous increase of energy consumption, the sustainability of energy supply becomes increasingly prominent. In the construction and use of buildings, nearly half of the world's energy consumption, China's current building energy consumption has accounted for more than 35% of the total energy consumption of society. Building energy saving has not only become the focus of common concern in the world today, but also an important part of the new normal stage of economic development in our country. The economy of the Yangtze River valley in China is developing rapidly, and the building energy consumption is increasing rapidly. The main climatic characteristics are hot summer and cold winter, and the demand for refrigeration and heating coexist. How to reduce the building energy consumption in this unique building climate area is a worldwide problem. The energy conservation work of buildings in hot summer and cold winter area starts late, and it is of great significance to find the wall insulation structure which is more suitable for the cold and cold areas in the north. In view of the characteristics of chamber and intermittent energy use in hot summer and cold winter area, the feasibility of energy consumption simulation software is verified by experiments, and the method of combining annual energy analysis with typical daily energy analysis is used. This paper makes a comprehensive and accurate study on the energy conservation of different wall structures from the aspects of generality and particularity of energy use. Then, the heat flux of the inner wall on the unit area is analyzed, and the energy relationship between the indoor environment with different wall structure and the energy dissipation through the wall is compared. The result of different research methods is that the energy saving effect of internal insulation wall structure is the best, and it is the least recommended that building wall should not do heat preservation. The annual energy consumption of air conditioning: the annual energy consumption of heat preservation wall structure in summer is lower than that of external insulation wall structure in the whole year, and the annual heating energy consumption of internal insulation wall structure in winter is 8.7 lower than that of external insulation wall structure. The total energy saving of internal and external insulation wall structure in hot summer and cold winter area is 2190.65MJ and 1569.05 MJ, respectively. Typical daily air conditioning energy consumption: the energy consumption of internal insulation wall structure in summer and winter is 18.9% and 13.440% lower than that of external insulation wall structure respectively. Heat flux per unit area: the heat flux of heat preservation wall structure in summer and winter is 11.7% and 12.45% lower than that of external insulation wall structure respectively. In addition, the different behavior habits of indoor personnel using air conditioning during the whole year and 24 hours a day were analyzed, and the characteristics of intermittent energy use were further studied. The results show that when the indoor temperature comfort is not affected, the air conditioning will not be turned on during the working day before going to bed. Situation 2 early in the morning to close the air conditioning, after getting up in the morning lower or higher indoor temperature will open when the air conditioner personnel leave the use of the habit of energy saving. Compared with the energy use habit of keeping air conditioning operation if the indoor environment is not comfortable, the total energy consumption of scenario 1 and scenario 2 are reduced by 6140.738MJ and 3814.919MJ, respectively, and the behavior habits of personnel have a significant effect on the energy use of air conditioning. Therefore, energy saving is closely related to everyone. Without affecting comfort, it is recommended to turn off air conditioning and turn on air conditioning on demand. Through qualitative and quantitative analysis of building energy consumption, this paper hopes to make a modest contribution to the development of building energy conservation in hot summer and cold winter area.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU111.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王巖;王yN瑋;白錫慶;張希;;墻體保溫材料的現(xiàn)狀及其發(fā)展趨勢[J];天津建設(shè)科技;2017年01期
2 郭莉梅;;夏熱冬冷地區(qū)建筑室內(nèi)裝飾與采暖方式和逸性研究[J];建筑節(jié)能;2016年07期
3 李紅蓮;楊柳;劉大龍;林宇凡;鄭武幸;;建筑能耗模擬用典型氣象年產(chǎn)生方法的研究[J];西安建筑科技大學(xué)學(xué)報(自然科學(xué)版);2015年02期
4 陳曦;葉凌;吳劍林;;可再生能源應(yīng)用在綠色建筑評價中的作用[J];制冷與空調(diào);2013年10期
5 夏向峰;;外墻保溫技術(shù)的現(xiàn)狀與發(fā)展趨勢及對策[J];山西建筑;2012年10期
6 錢曉倩;朱耀臺;;夏熱冬冷地區(qū)建筑節(jié)能存在的問題與研究方向[J];施工技術(shù);2012年03期
7 馮晶琛;丁云飛;吳會軍;;EnergyPlus能耗模擬軟件及其應(yīng)用工具[J];建筑節(jié)能;2012年01期
8 錢曉倩;朱耀臺;;基于間歇式、分室用能特點下建筑耗能的基礎(chǔ)研究[J];土木工程學(xué)報;2010年S2期
9 彭琛;燕達(dá);周欣;;建筑氣密性對供暖能耗的影響[J];暖通空調(diào);2010年09期
10 艾紅梅;白雪嬌;;我國建筑屋面保溫板的研究與發(fā)展[J];建筑節(jié)能;2010年08期
相關(guān)博士學(xué)位論文 前2條
1 李楠;夏熱冬冷地區(qū)人員行為對住宅建筑能耗的影響研究[D];重慶大學(xué);2011年
2 郁文紅;建筑節(jié)能的理論分析與應(yīng)用研究[D];天津大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 周斌;夏熱冬冷地區(qū)間歇性用能狀態(tài)下墻體保溫節(jié)能對比研究[D];浙江大學(xué);2015年
2 張楠;外墻保溫對長沙地區(qū)多層辦公建筑能耗的影響研究[D];湖南大學(xué);2014年
3 顧丹薇;我國能源經(jīng)濟(jì)效率區(qū)域差異實證研究[D];復(fù)旦大學(xué);2014年
4 吳敏莉;夏熱冬冷地區(qū)居住建筑墻體保溫節(jié)能特性研究[D];浙江大學(xué);2014年
5 李金;夏熱冬冷地區(qū)居住建筑保溫墻體節(jié)能效果分析[D];浙江大學(xué);2013年
6 張敏飛;重慶地區(qū)木結(jié)構(gòu)住宅節(jié)能性研究[D];重慶大學(xué);2011年
7 李百益;建筑圍護(hù)結(jié)構(gòu)墻體保溫節(jié)能技術(shù)的研究[D];西安科技大學(xué);2009年
8 李準(zhǔn);基于EnergyPlus的建筑能耗模擬軟件設(shè)計開發(fā)與應(yīng)用研究[D];湖南大學(xué);2009年
9 馬明明;公共建筑空調(diào)系統(tǒng)改造與節(jié)能潛力的研究[D];重慶大學(xué);2007年
10 孫海萍;上海地區(qū)高層住宅建筑圍護(hù)結(jié)構(gòu)節(jié)能技術(shù)探討[D];同濟(jì)大學(xué);2007年
,本文編號:2413563
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2413563.html