某工業(yè)廠房巖石錨桿基礎(chǔ)抗拔性能的分析
[Abstract]:Because the column foundation of a certain industrial factory building is built directly on the rock and the factory building itself is relatively high, the foundation is subjected to greater bending moment and horizontal force, so the foundation adopts rock anchor foundation. The design of anchor bolt adopts the design method of steel structure pillar base bolt. In order to ensure the smooth implementation of the project and to provide theoretical and practical guidance for the subsequent similar projects, the experimental study and finite element analysis of the pull-out force of the foundation of the factory building column are carried out in order to ensure the smooth implementation of the project. In this paper, taking the test of uplift bearing capacity of G row partial anchor foundation as an example, a total of 37 anchors are extracted according to 5% of the total number of anchors, and the uplift bearing capacity of a single anchor rod is monitored on the spot. It is proved that the axial pull-out bearing capacity of a single anchor can meet the 160kN design requirements of the given eigenvalues. With the exception of individual anchors being pulled out, the single bolt can withstand the pull-out force of 260kN without obvious damage. ANSYS finite element numerical simulation software is used to establish an effective three-dimensional model, and the anti-pull-out force of anchor rod is analyzed and calculated, and the results of field test are compared. The experimental value is basically consistent with the analytical value, which shows the effectiveness of the selected finite element model. On this basis, the finite element method is used to study the influence factors of bolt pull-out force. First of all, the elastic modulus of different rock is studied. The displacement curve of rock elastic modulus and free end tensile capacity of anchor can be seen that the displacement of elastic modulus changes greatly when 15~35GPa. It is shown that the anchor rod is especially important for rock mass anchoring when the elastic modulus of rock is small. When the elastic modulus of rock reaches 60GPa, the free end displacement of rock bolt tends to be stable, which indicates that the anchoring effect is not obvious when the material stiffness of rock mass is large. Secondly, the influence of friction coefficient of concrete-anchor rod on the anchoring system is discussed. When the friction coefficient is small, the anchor rod is pulled out with the increase of external load, and the anchor is in the elastic stage in the process. Such failure is mainly due to the failure caused by insufficient friction on the contact surface; When the friction coefficient is large, the reinforcement anchor is first in elastic stage, then in plastic stage, and then increases the external load, the anchor rod is pulled out and the anchoring system is destroyed. In the course of field test, it is found that there is a great amount of surplus of anchor pull-out bearing capacity. Finally, the anchoring depth of anchor rod is further studied. When the anchoring depth is 2.5m, the pull-out bearing capacity is 194kNs, which is 1.2 times of the original design value 160kN. Meet the original requirements. Finally, the relationship between anchor rod diameter and anchor depth is obtained by analysis. In a word, the study shows that improving the tensile strength and the friction of the interface can improve the uplift bearing capacity of the anchoring system, and selecting reasonable anchoring depth can effectively save the project cost and the project construction time.
【學(xué)位授予單位】:遼寧科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU476
【參考文獻】
相關(guān)期刊論文 前10條
1 李偉文;彭偉;楊泳;宋徽;;基于粘結(jié)單元的FRP-混凝土粘結(jié)界面的數(shù)值分析[J];防災(zāi)減災(zāi)工程學(xué)報;2016年01期
2 劉少偉;尚鵬翔;張輝;姜彥軍;;煤礦軟弱圍巖巷道錨桿孔鉆擴機理與試驗[J];煤炭學(xué)報;2015年08期
3 程良奎;范景倫;張培文;周建明;;提高巖土錨桿抗拔承載力的途徑、方法及其效果[J];工業(yè)建筑;2015年06期
4 潘立業(yè);張昌鎖;馬潔騰;王銀濤;柳明;;高頻超聲導(dǎo)波檢測錨桿有效錨固長度分析[J];煤炭科學(xué)技術(shù);2014年12期
5 張小波;趙光明;孟祥瑞;;基于Drucker-Prager屈服準(zhǔn)則的圓形巷道圍巖彈塑性分析[J];煤炭學(xué)報;2013年S1期
6 劉雪鋒;涂光亞;易壯鵬;;鋼管與核心混凝土之間的粘結(jié)單元及其應(yīng)用[J];中外公路;2012年06期
7 王者超;趙建綱;李術(shù)才;薛翊國;張慶松;姜彥彥;;循環(huán)荷載作用下花崗巖疲勞力學(xué)性質(zhì)及其本構(gòu)模型[J];巖石力學(xué)與工程學(xué)報;2012年09期
8 楊強;冷曠代;張小寒;劉耀儒;;Drucker-Prager彈塑性本構(gòu)關(guān)系積分:考慮非關(guān)聯(lián)流動與各向同性硬化[J];工程力學(xué);2012年08期
9 袁小平;劉紅巖;王志喬;;基于Drucker-Prager準(zhǔn)則的巖石彈塑性損傷本構(gòu)模型研究[J];巖土力學(xué);2012年04期
10 王海龍;李朝紅;徐光興;;帶肋鋼筋與混凝土粘結(jié)性能的細觀數(shù)值模擬[J];西南交通大學(xué)學(xué)報;2011年03期
相關(guān)博士學(xué)位論文 前10條
1 賀月香;土和凍土的動態(tài)力學(xué)性能及本構(gòu)模型研究[D];北京理工大學(xué);2014年
2 彭寧波;錨固巖質(zhì)邊坡地震動力響應(yīng)及錨固機理研究[D];蘭州大學(xué);2014年
3 張益東;錨固復(fù)合承載體承載特性研究及在巷道錨桿支護設(shè)計中的應(yīng)用[D];中國礦業(yè)大學(xué);2013年
4 趙宇飛;加錨結(jié)構(gòu)面剪切特性及錨固巖體綜合力學(xué)模型研究[D];中國水利水電科學(xué)研究院;2013年
5 鄭西貴;煤礦巷道錨桿錨索托錨力演化機理及圍巖控制技術(shù)[D];中國礦業(yè)大學(xué);2013年
6 葉根飛;巖土錨固荷載傳遞規(guī)律與錨固特性試驗研究[D];西安科技大學(xué);2012年
7 汪班橋;土層錨桿常見病害破壞機理及防治技術(shù)研究[D];長安大學(xué);2010年
8 趙同彬;深部巖石蠕變特性試驗及錨固圍巖變形機理研究[D];山東科技大學(xué);2009年
9 冀曉東;凍融后混凝土力學(xué)性能及鋼筋混凝土粘結(jié)性能的研究[D];大連理工大學(xué);2007年
10 朱訓(xùn)國;地下工程中注漿巖石錨桿錨固機理研究[D];大連理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 關(guān)鍵;巖石錨桿基礎(chǔ)的應(yīng)用與有限元分析[D];遼寧科技大學(xué);2016年
2 王政;地下結(jié)構(gòu)錨桿加固技術(shù)與靜動力分析[D];河南科技大學(xué);2015年
3 張文勇;巖石錨桿基礎(chǔ)在風(fēng)電基礎(chǔ)工程中的應(yīng)用與研究[D];湖南科技大學(xué);2015年
4 王鵬飛;基于Drucker-Prager準(zhǔn)則的PBX準(zhǔn)靜態(tài)變形與破壞研究[D];中國工程物理研究院;2015年
5 孫銘;鋼筋混凝土粘結(jié)滑移本構(gòu)試驗研究及有限元分析[D];浙江大學(xué);2015年
6 董方方;錨桿拉拔荷載傳遞規(guī)律及巷道支護參數(shù)優(yōu)化研究[D];內(nèi)蒙古科技大學(xué);2014年
7 陳瑤;樹脂錨桿錨固性能的力學(xué)分析[D];中國礦業(yè)大學(xué);2014年
8 袁小平;基于細觀力學(xué)的巖石彈塑性損傷模型研究[D];中國地質(zhì)大學(xué)(北京);2012年
9 丁新新;鋼筋與機制砂混凝土粘結(jié)性能試驗研究及非線性數(shù)值模擬[D];華北水利水電學(xué)院;2012年
10 許剛剛;預(yù)應(yīng)力巖石錨桿合理預(yù)張荷載確定方法研究[D];西安科技大學(xué);2011年
,本文編號:2380157
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2380157.html