天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 建筑工程論文 >

型鋼混凝土柱—鋼梁組合框架結構抗震性能研究

發(fā)布時間:2018-12-12 16:53
【摘要】:型鋼混凝土柱-鋼梁組合框架結構是一種新型的鋼與混凝土組合結構體系。本文以工程實例為背景,建立了 12層型鋼混凝土柱-鋼梁組合框架結構模型。運用有限元軟件ETABS對結構進行模態(tài)分析、振型分解反應譜分析、線性時程分析、靜力非線性pushover分析,研究框架柱型鋼含鋼率、框架柱與框架鋼梁線剛度比、框架柱混凝土強度等級、現(xiàn)澆鋼筋混凝土樓板厚度四個因素對結構自振特性、彈性變形能力及整體抗側移剛度、彈塑性變形及延性性能、地震耗能能力等的影響。主要結論如下:(1)當型鋼混凝土柱含鋼率分別由3.86%、5.14%、4%增大到11.14%、12.57%、9.2%時,結構在線性階段的第一自振周期由2.038s減小到2.013s,最大層間位移角由1/800減小到1/869,底部剪力由3853.18KN增大到3897.54KN,表明結構的側向變形隨之減小,整體抗側移剛度提高。在彈塑性階段,同樣增大結構的含鋼率,結構在性能點處的有效周期由2.01s減小到1.81s,最大層間位移角由1/163減小到1/168,結構梁柱兩端塑性鉸發(fā)展越來越充分,變形量越來越大。(2)當結構的邊梁柱線剛度比由0.117、0.204、0.390增大到0.334、0.580、1.11,中梁柱線剛度比由0.066、0.116、0.223增大到0.210、0.366、0.699時,結構在線性階段的第一自振周期由2.038s減小到1.446s,最大層間位移角由]/800減小到1/1280,底部剪力由3853.18KN增大到7341.61KN,表明結構的側向變形隨之顯著減小,整體抗側移剛度顯著提高。在彈塑性階段,同樣增大結構的梁柱線剛度比,結構在性能點處的有效周期從2.01s減小到1.55s,最大層間位移角由1/163減小到1/199,框架梁柱兩端塑性鉸開展越來越充分。但是當結構邊梁柱線剛度比增大到0.264、0.458、0.876時,中梁柱線剛度比增大到0.16、0.277、0.53時,組合框架結構型鋼混凝土柱比鋼梁先屈服破壞,結構出現(xiàn)"強梁弱柱"屈服現(xiàn)象,不符合建筑抗震設計要求的基本原則"強柱弱梁"。(3)當框架柱混凝土強度等級由C30增大到C80時,結構在線性階段的第一自振周期由2.057s減小到2.002s,最大層間位移角由1/858減小到1/879,底部剪力由3851.88KN增大到3879.74KN,可見框架結構的側向變形隨之減小,整體抗側移剛度提高。在彈塑性階段,同樣增大結構的混凝土強度等級,結構在性能點處的有效周期由2.045s減小到1.958s,最大層間位移角由1/161減小到1/172,結構梁柱兩端塑性鉸發(fā)展越來越充分,變形量越來越大。(4)在線性階段,當樓板厚度由100mm增加到120mm時,框架的整體抗側移剛度顯著提升。當樓板厚度從120mm再增加到150mm時,結構的彈性變形和抗側移剛度顯著下降。在彈塑性階段,樓板厚度從100mm增大到150mm時,結構在性能點處的有效周期從2.01s減小到1.79s,最大層間位移角由1/163減小到1/174,結構梁柱兩端塑性鉸發(fā)展越來越充分,變形量越來越大。
[Abstract]:Steel reinforced concrete column-steel beam composite frame structure is a new type of steel and concrete composite structure system. In this paper, a 12-story steel reinforced concrete column-steel beam composite frame structure model is established based on an engineering example. Modal analysis, mode decomposition response spectrum analysis, linear time history analysis, static nonlinear pushover analysis, steel content ratio of frame column steel and linear stiffness ratio of frame column to frame steel beam are studied by using finite element software ETABS. The influence of four factors, such as strength grade of frame column concrete, thickness of cast-in-place reinforced concrete floor slab, on the natural vibration characteristics, elastic deformation ability and overall anti-lateral displacement stiffness, elastic-plastic deformation and ductility, seismic energy dissipation ability, etc. The main conclusions are as follows: (1) when the steel content of SRC columns increases from 3.865.14% to 11.14% 12.57,9.2% respectively, The first natural vibration period of the structure decreases from 2.038 s to 2.013 s, the maximum interstory displacement angle decreases from 1 / 800 to 1 / 869, and the bottom shear force increases from 3853.18KN to 3897.54 KN, which indicates that the lateral deformation of the structure decreases. The overall anti-lateral stiffness is improved. In the elastic-plastic stage, the steel content of the structure is also increased, the effective period of the structure at the performance point is reduced from 2.01s to 1.81s, and the maximum interstory displacement angle is reduced from 1 / 163 to 1 / 168.The plastic hinge at both ends of the structure Liang Zhu develops more and more fully. (2) when the line stiffness ratio of Liang Zhu on the side of the structure increases from 0.117 to 0.204 ~ 0.390 to 0.334U 0.580 ~ 1.11, and from 0.066 ~ 0.116 ~ 0.116 ~ (0.223) to 0.21010 ~ 0.366,0.699, the ratio of line stiffness is increased from 0.066 ~ 0.116 ~ (0.223) to 0.21010 ~ (0.366,0.699). The first natural vibration period of the structure decreases from 2.038 s to 1.446s, the maximum interstory displacement angle decreases from] / 800 to 1 / 1280, and the bottom shear force increases from 3853.18KN to 7341.61 KN, which indicates that the lateral deformation of the structure decreases significantly. The overall anti-lateral stiffness is improved significantly. In the elastoplastic stage, the effective period of the structure at the performance point is reduced from 2.01s to 1.55s, and the maximum interstory displacement angle is reduced from 1 / 163 to 1 / 199. The plastic hinge at both ends of the frame Liang Zhu is more and more fully developed. However, when the line stiffness ratio of Liang Zhu on the side of the structure is increased to 0.264 ~ 0.458,0.876, and the ratio of line stiffness of middle Liang Zhu is increased to 0.160.277,0.53, the steel reinforced concrete columns of composite frame structure yield and destroy before the steel beams. The yield phenomenon of "strong beam and weak column" appears in the structure, which does not meet the basic principle of seismic design. (3) when the concrete strength grade of frame column increases from C30 to C80, The first natural vibration period of the structure decreases from 2.057s to 2.002s, the maximum interstory displacement angle decreases from 1 / 858 to 1 / 879, and the bottom shear force increases from 3851.88KN to 3879.74KN, so the lateral deformation of the frame structure decreases. The overall anti-lateral stiffness is improved. In the elastic-plastic stage, the effective period of the structure at the performance point is reduced from 2.045 s to 1.958 s, and the maximum interstory displacement angle is reduced from 1 / 161 to 1 / 172. The plastic hinge at both ends of the structure Liang Zhu develops more and more fully and the deformation becomes larger and larger. (4) in the linear stage, when the floor thickness is increased from 100mm to 120mm, the overall anti-lateral stiffness of the frame increases significantly. When floor thickness increases from 120mm to 150mm, the elastic deformation and anti-lateral stiffness of the structure decrease significantly. In the elastoplastic stage, when the floor thickness increases from 100mm to 150mm, the effective period of the structure at the performance point decreases from 2.01s to 1.79s, and the maximum interstory displacement angle decreases from 1 / 163 to 1 / 174.The plastic hinge at both ends of the structure develops more and more fully. The amount of deformation is increasing.
【學位授予單位】:西安工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU398.9;TU352.11

【參考文獻】

相關期刊論文 前10條

1 薛建陽;翟磊;馬林林;葛鴻鵬;董金爽;吳琨;;鋼結構仿古建筑帶斗h1檐柱抗震性能試驗研究及有限元分析[J];土木工程學報;2016年07期

2 薛建陽;楊青峰;劉祖強;趙鴻鐵;周超鋒;;型鋼混凝土異形柱中框架和邊框架抗震性能試驗對比分析[J];西安建筑科技大學學報(自然科學版);2016年03期

3 王偉;廖芳芳;陳以一;;基于微觀機制的鋼結構節(jié)點延性斷裂預測與裂后路徑分析[J];工程力學;2014年03期

4 席攀;沈之容;;Pushover分析中側向力分布模式對結果的影響[J];佳木斯大學學報(自然科學版);2013年02期

5 葉列平;程光煜;曲哲;陸新征;;基于能量抗震設計方法研究及其在鋼支撐框架結構中的應用[J];建筑結構學報;2012年11期

6 石永久;王萌;王元清;;循環(huán)荷載作用下結構鋼材本構關系試驗研究[J];建筑材料學報;2012年03期

7 羅云蓉;王清遠;劉永杰;黃崇湘;;Q235、Q345鋼結構材料的低周疲勞性能[J];四川大學學報(工程科學版);2012年02期

8 卓承軍;;型鋼混凝土在結構中的應用[J];中華建設;2012年01期

9 羅云蓉;王清遠;;建筑用抗震鋼高應變低周及超低周疲勞性能研究進展[J];四川建筑科學研究;2011年03期

10 田丹丹;丁小軍;馮成運;;基于不同含鋼率的型鋼混凝土柱-鋼梁混合結構抗震分析[J];甘肅科技;2011年02期

相關博士學位論文 前2條

1 王濤;端板連接彎矩—轉角關系及半剛性鋼框架抗震性能的研究[D];華南理工大學;2013年

2 何文輝;方鋼管混凝土柱—鋼梁組合框架抗震性能研究[D];湖南大學;2009年

相關碩士學位論文 前10條

1 郭華軍;型鋼混凝土剪力墻抗震性能的試驗研究[D];山東建筑大學;2016年

2 岳帥;基于Pushover分析的多角度能力譜法研究[D];北京交通大學;2015年

3 張塵宇;型鋼混凝土組合筒體的力學特性研究以及在超高層建筑中的應用[D];貴州大學;2015年

4 劉苗苗;帶桁架式轉換層的高層建筑結構抗震性能研究[D];石家莊鐵道大學;2014年

5 蘭琳;高層型鋼混凝土框架柱的抗震性能研究[D];西南交通大學;2014年

6 馮迦楠;型鋼混凝土柱—鋼梁組合框架抗震性能研究[D];鄭州大學;2014年

7 關雨辰;性能設計在鋼框架結構中的應用研究[D];華南理工大學;2013年

8 郭俊瓊;型鋼混凝土組合結構梁柱節(jié)點受力性能研究[D];西南交通大學;2011年

9 鮑利媛;復雜高層塔式結構地震反應分析[D];西安科技大學;2010年

10 王寶峰;在役半剛性連接鋼框架結構的抗震性能評估[D];大連理工大學;2010年

,

本文編號:2374948

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2374948.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶6e97e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com