基于PMV的室內(nèi)環(huán)境智能系統(tǒng)設(shè)計
[Abstract]:In recent years, with the continuous improvement of people's living standards and the progress of computer technology and network technology, more and more smart home products have emerged. They not only have many functions of traditional home, but also pay more attention to the personal experience of users, so that people live more comfortable and convenient. At present, the mainstream smart home products are based on the Internet of things technology as a variety of monitoring products, for indoor thermal comfort products are almost no. The reason is that the calculation of the parameters of PMV (PredictedMeanVote) thermal comfort index is complicated, the environmental factors involved are many and the data collection is very inconvenient. And the existing research for each user's own situation is also relatively few, so often the practical effect is not ideal. In order to solve the problem of thermal comfort calculation, this paper simulates and studies the calculation method of PMV thermal comfort index, and proposes an improved particle swarm optimization algorithm with constraints, aiming at the lack of constraints on variables in the optimization of standard particle swarm optimization (PSO). An improved particle swarm optimization algorithm with constraints is used to solve the PMV equation. Secondly, a indoor thermal comfort system based on smart phone is designed. It includes Android application and data acquisition terminal based on nRF51822 low power Bluetooth chip. The system sends the environment data to Android through Bluetooth. In Android application, the metabolism rate of human body is estimated by recording the number of walking steps per unit time, and the thermal resistance of clothes is obtained by setting the user in the application. Particle swarm optimization (PSO) is transplanted to Android application to complete PMV calculation and control decision. In order to make the indoor environment satisfy the human body's requirement for comfort, taking the PMV equal to zero as the goal, solving the given value of air temperature and air velocity which makes people feel the most comfortable, the adjustment control is realized by sending infrared to the air conditioning equipment. This system has remarkable effect in personalization and practicability.
【學位授予單位】:北方工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU855;TP391.44;TN929.5
【參考文獻】
相關(guān)期刊論文 前10條
1 劉慶;徐繼寧;;基于改進粒子群算法的室內(nèi)熱舒適度優(yōu)化研究[J];工業(yè)控制計算機;2017年02期
2 李伊潔;劉何清;高黎穎;劉天宇;;關(guān)于PMV熱舒適模型及指標的分析[J];礦業(yè)工程研究;2016年02期
3 余健;張華玲;;病人新陳代謝及其對熱環(huán)境舒適性評價的影響[J];制冷與空調(diào)(四川);2015年05期
4 孫賀江;吳塵;;基于正交試驗法的大型客機座艙氣流組織優(yōu)化及熱舒適性分析[J];天津大學學報(自然科學與工程技術(shù)版);2013年05期
5 韓旭;郭學森;李永;劉永華;;舒適性方程的簡化計算[J];解放軍理工大學學報(自然科學版);2011年06期
6 王萌;魏彩欣;吳佐蓮;劉小春;劉惠;黃冠豪;;工位空調(diào)熱舒適指標PMV人工神經(jīng)網(wǎng)絡(luò)模型研究[J];制冷與空調(diào);2011年05期
7 王丹;曹紅奮;;基于PMV控制目標的舒適性空調(diào)應(yīng)用研究[J];潔凈與空調(diào)技術(shù);2011年01期
8 王海英;胡松濤;;對PMV熱舒適模型適用性的分析[J];建筑科學;2009年06期
9 周漢清;王云良;史二穎;;基于人體熱舒適性指標PMV的暖通空調(diào)控制器[J];測控技術(shù);2008年04期
10 唐高見;呂曉華;;人體能量消耗的測量誤差[J];中國組織工程研究與臨床康復(fù);2008年02期
相關(guān)碩士學位論文 前1條
1 辛碩;基于ZigBee無線網(wǎng)絡(luò)和LabVIEW的智能家居系統(tǒng)設(shè)計[D];北方工業(yè)大學;2015年
,本文編號:2358149
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2358149.html