基于微震能量演化的大崗山右岸邊坡抗剪洞加固效果研究
[Abstract]:Microseismic monitoring technology has been widely used in rock mass engineering monitoring, but there are still many problems on how to evaluate the stability of rock mass engineering based on microseismic monitoring data. Based on the principle of quantitative microseismology, the microseismic energy density is used to comprehensively reflect the microfracture distribution characteristics of rock mass, and the relationship of microseismic energy and frequency is deduced theoretically with the right bank slope engineering of Dagangshan as the research background, based on the principle of quantitative microseismology. The b- 蔚 value is proposed to characterize the degree of micro-fracture deformation of rock mass, and the energy transfer characteristics, focal mechanism, deformation characteristics and stability evolution of rock mass in the slope before and after the reinforcement of the shear tunnel are further studied. The results show that the microseismic energy density can help to identify the potential dangerous area of slope, and the change of b- 蔚 value in the relation of energy and frequency reveals the evolution process of microfracture and deformation of slope. The activity rate and energy density of the microseismic events of the slope are obviously reduced and the mechanical performance of the slope is obviously improved after the reinforcement of the shear tunnel. During the excavation of the slope, the b蔚 value of the rock mass in the area strengthened by shear tunnel decreases slightly, and increases after the reinforcement of the anti-shear hole, which indicates that the anti-shear tunnel can restrain the micro-fracture and deformation of the rock mass and improve the stability of the slope. The reliability of the method is verified by comparing the results of field deformation monitoring. The method of evaluating microseismic energy density and energy frequency is put forward, which enriches the microseismic analysis method of engineering rock mass stability, and can provide a reference for the selection of reinforcement measures and stability analysis of similar rock slope.
【作者單位】: 大連理工大學(xué)海岸和近海工程國家重點實驗室;大連理工大學(xué)巖石破裂與失穩(wěn)研究中心;力軟科技(大連)股份有限公司;
【基金】:國家重點基礎(chǔ)研究發(fā)展計劃(“973”計劃)項目(2014CB047100) 國家自然科學(xué)基金項目(51274053)
【分類號】:TU457
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏利娜;薛世鵬;周春艷;丁慧哲;李靜;;微震信號現(xiàn)場監(jiān)測試驗及特征研究[J];河北工程大學(xué)學(xué)報(自然科學(xué)版);2014年02期
2 ;文摘[J];世界地震工程;1985年03期
3 周立功;微震臺網(wǎng)在地質(zhì)工作中的應(yīng)用[J];中國地質(zhì);1983年01期
4 魯振華,張連城;門頭溝礦微震的近場監(jiān)測效能評估[J];地震;1989年05期
5 唐禮忠;張君;李夕兵;汪令輝;周建雄;劉濤;;基于定量地震學(xué)的礦山微震活動對開采速率的響應(yīng)特性研究[J];巖石力學(xué)與工程學(xué)報;2012年07期
6 王鵬;常旭;王一博;王璐琛;翟鴻宇;;基于時頻稀疏性分析法的低信噪比微震事件識別與恢復(fù)[J];地球物理學(xué)報;2014年08期
7 王鵬;桂志先;謝宋雷;王朝鋒;張建萍;;壓裂微震數(shù)據(jù)的快速讀取及可視化[J];物探化探計算技術(shù);2010年02期
8 肖和平;湖南邵陽市郊微震活動特征及成因[J];華南地震;1989年03期
9 韓伯文;關(guān)于地微震若干問題的看法與認(rèn)識[J];勘察科學(xué)技術(shù);2001年06期
10 柳云龍;田有;馮fE;鄭確;遲喚昭;;微震技術(shù)與應(yīng)用研究綜述[J];地球物理學(xué)進(jìn)展;2013年04期
相關(guān)會議論文 前2條
1 王鵬;常旭;王一博;王璐琛;;水力壓裂誘發(fā)微震事件的頻譜特征統(tǒng)計分析[A];中國地球物理2013——第二十三專題論文集[C];2013年
2 李學(xué)政;唐云凱;;微震工程檢測與應(yīng)用技術(shù)[A];國家安全地球物理叢書(七)——地球物理與核探測[C];2011年
相關(guān)博士學(xué)位論文 前2條
1 胡永泉;地面微震資料去噪方法研究[D];西南石油大學(xué);2013年
2 葉慶東;大別蘇魯?shù)貐^(qū)背景噪聲成像與汶川地震科學(xué)鉆探井孔附近微震定位[D];中國地震局地球物理研究所;2014年
相關(guān)碩士學(xué)位論文 前3條
1 趙中流;基于Fermat原理和加速度估計的微震定位研究[D];吉林大學(xué);2016年
2 吳以群;煤系地層微震定位算法的研究[D];安徽理工大學(xué);2014年
3 于淼;基于BP-GA混合算法的微震反演研究[D];吉林大學(xué);2013年
,本文編號:2314179
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2314179.html