矩形高層建筑非高斯風(fēng)壓時(shí)程峰值因子計(jì)算方法
[Abstract]:A rigid model wind tunnel test was carried out on a rectangular high-rise building. Firstly, based on the third and fourth moments of the wind pressure history, the Gao Si region and the non-Gao Si region of wind pressure pulsation on the surface of rectangular high-rise building are divided under different wind directions. The results show that the non-Gao Si area on the windward is mainly located at the edge and corner of the windward. On the side wind surface, the non-Gao Si area is mainly located near the front edge of the windward, while on the short side, it is located in the vortex reattachment area near the leeward edge when the long side is upwind. Secondly, based on Hermite series method and improved Hermite series method, through parameter analysis and pulse wind pressure spectrum fitting, a simplified calculation method of peak factor of non-Gao Si wind pressure history, the three-parameter Hermite series method, is proposed. Finally, the validity and accuracy of the Hermite series method and the improved Hermite series method and the three-parameter Hermite series method are verified by the instantaneous extreme value in the wind pressure process and the frequency distribution histogram of the wind pressure time history, respectively. The results show that compared with the peak factor corresponding to the instantaneous extreme value in the wind pressure process, the calculation results of the Hermite series method are conservative, and the calculation results of the three-parameter Hermite series method and the improved Hermite series method and the deviation rate of the modified Hermite series method are less than 10 parts. In addition, the probability density curve obtained by the three-parameter Hermite series method and the improved Hermite series method basically coincides with the actual wind pressure time-history frequency distribution histogram. It can accurately reflect the probability density distribution of the actual wind pressure time history.
【作者單位】: 同濟(jì)大學(xué)土木工程學(xué)院建筑工程系;同濟(jì)大學(xué)建筑設(shè)計(jì)研究院(集團(tuán))有限公司;
【基金】:國(guó)家自然科學(xué)基金青年基金項(xiàng)目(51408353) 上海市青年科技啟明星計(jì)劃項(xiàng)目(15QB1404800)
【分類號(hào)】:TU973
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 莊翔;董欣;丁潔民;鄭毅敏;;矩形高層建筑表面風(fēng)壓脈動(dòng)的非高斯特性研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2016年S1期
2 李壽科;李壽英;陳政清;孫洪鑫;;圍護(hù)結(jié)構(gòu)非高斯風(fēng)壓極值估計(jì)的改進(jìn)Hermite峰值因子法[J];建筑結(jié)構(gòu)學(xué)報(bào);2015年04期
3 王飛;全涌;顧明;;基于廣義極值理論的非高斯風(fēng)壓極值計(jì)算方法[J];工程力學(xué);2013年02期
4 樓文娟;李進(jìn)曉;沈國(guó)輝;黃銘楓;;超高層建筑脈動(dòng)風(fēng)壓的非高斯特性[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2011年04期
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 莊翔;董欣;鄭毅敏;趙昕;;矩形高層建筑非高斯風(fēng)壓時(shí)程峰值因子計(jì)算方法[J];工程力學(xué);2017年07期
2 董欣;趙昕;丁潔民;莊翔;;矩形高層建筑表面風(fēng)壓特性研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2016年10期
3 王旭;黃鵬;劉海明;余先鋒;;超強(qiáng)臺(tái)風(fēng)作用下低矮建筑屋蓋風(fēng)壓非高斯特性研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2016年10期
4 武岳;陳龍;吳迪;;結(jié)構(gòu)風(fēng)振響應(yīng)極值估計(jì)方法比較[J];工程力學(xué);2015年12期
5 彭留留;黃國(guó)慶;李明水;袁理明;羅楠;;某機(jī)場(chǎng)新航站樓風(fēng)壓分布特征及風(fēng)振系數(shù)研究[J];空氣動(dòng)力學(xué)學(xué)報(bào);2015年04期
6 李正農(nóng);伍歡慶;;風(fēng)壓極值的閾值模型研究[J];地震工程與工程振動(dòng);2015年01期
7 潘小濤;黃銘楓;樓文娟;;復(fù)雜體型屋蓋表面風(fēng)壓的高階統(tǒng)計(jì)量與非高斯峰值因子[J];工程力學(xué);2014年10期
8 李錦華;吳春鵬;陳水生;;矩形結(jié)構(gòu)非高斯風(fēng)荷載特性研究[J];振動(dòng).測(cè)試與診斷;2014年05期
9 戈宏飛;任t,
本文編號(hào):2257596
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2257596.html