天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 建筑工程論文 >

用銅渣制備無機膠凝材料及其高溫性能研究

發(fā)布時間:2018-09-07 20:59
【摘要】:在高溫環(huán)境作用中,混凝土?xí)l(fā)生一系列的物理和化學(xué)變化,從而使得建筑結(jié)構(gòu)出現(xiàn)破損,甚至坍塌,因此混凝土材料的耐高溫性能直接影響著建筑結(jié)構(gòu)的安全。有研究早已表明混凝土中膠凝材料的高溫劣化是引起混凝土高溫?fù)p傷的重要因素之一。因此對傳統(tǒng)混凝土膠凝材料進行改性或開發(fā)新型膠凝材料,提高其耐高溫性能,能夠減小混凝土高溫?fù)p傷,從而可以提高建筑結(jié)構(gòu)在高溫環(huán)境下的安全性。工業(yè)固體廢棄物是在工業(yè)生產(chǎn)時產(chǎn)生的副產(chǎn)品,若處理不當(dāng),將會對生態(tài)環(huán)境造成非常不利的影響,所以如何處理這些工業(yè)固廢物并提高其綜合利用率便成為日益迫切需要解決的問題。目前,就有不少學(xué)者進行利用工業(yè)固體廢棄物制備無機膠凝材料的研究,并發(fā)現(xiàn)此類無機膠凝材料有著不同于普通硅酸鹽水泥膠凝材料的特性,其中就有研究表明粉煤灰、耐火磚粉、硅粉和礦渣粉等工業(yè)固體廢棄物可以提高膠凝材料的耐高溫性能。銅渣作為一種產(chǎn)量較大的工業(yè)固體廢棄物,由于綜合利用率很低,導(dǎo)致堆存量巨大,尤其像銅礦產(chǎn)資源豐富的云南省,隨著銅冶煉工業(yè)的生產(chǎn),帶來了大量銅渣的排放。鑒于銅渣與粉煤灰、礦渣等工業(yè)廢渣有著同樣的高溫生產(chǎn)環(huán)境和相似的化學(xué)成分,故也可能有著相似的膠凝特性,因此銅渣制備的無機膠凝材料也可能具有較好的耐高溫性能;谝陨锨闆r,本文利用工業(yè)固廢物銅渣制備了銅渣水泥復(fù)合膠凝材料體系(CSC)和堿激發(fā)銅渣膠凝材料體系(CSA),運用了材料萬能試驗機系統(tǒng)、X射線衍射儀、熱重分析儀、掃描電鏡等試驗分析設(shè)備,研究了高溫后銅渣膠凝材料力學(xué)性能隨溫升變化規(guī)律、水化產(chǎn)物變化以及微觀形貌演化等內(nèi)容。研究結(jié)果表明:(1)與普通硅酸鹽水泥膠凝材料相比,摻入銅渣對膠凝材料的性能沒有不利影響且高溫力學(xué)性能變化規(guī)律一致;(2)不同于水泥膠凝材料,堿激發(fā)銅渣膠凝體系(CSA)抗壓強度隨溫升而提高;(3)CSC體系和CSA體系的物相組分有所不同,CSC體系主要的物相組分為C-S-H和CH且會在高溫下分解,CSA體系主要的物相組分為Fe2SiO4和Fe3O4且會在高溫下生成耐高溫物質(zhì)Fe2O3和FeO;(4)CSC體系和CSA體系在高溫作用下的微觀形貌和結(jié)構(gòu)有所不同,CSC體系在高溫下由于水化產(chǎn)物分解使得微觀結(jié)構(gòu)變得松散,CSA體系在氋溫下由于生成耐高溫物質(zhì)使得微觀形貌和結(jié)構(gòu)更加密實從而力學(xué)性能得到恢復(fù)并提升。銅渣用于制備無機膠凝材料,有利于銅渣的資源化利用,且堿激發(fā)銅渣膠凝材料有較好的耐高溫性能,在提高強度后可應(yīng)用于冶煉、石油開采等高溫環(huán)境中的工業(yè)建筑結(jié)構(gòu)以及面臨火災(zāi)威脅的民用建筑結(jié)構(gòu)。本論文結(jié)果對耐高溫混凝土膠凝材料的開發(fā)提供理論依據(jù),同時期望在提高銅渣以及其他工業(yè)固體廢棄物的資源化利用方面有參考意義。
[Abstract]:In the high temperature environment, a series of physical and chemical changes will take place in the concrete, which will lead to the breakage or even collapse of the building structure. Therefore, the high temperature resistance of the concrete material will directly affect the safety of the building structure. It has been shown that high temperature deterioration of cement material in concrete is one of the important factors causing high temperature damage of concrete. Therefore, the modification of traditional concrete cementing materials or the development of new cementitious materials can improve the high temperature resistance of concrete, reduce the damage of concrete at high temperature, and improve the safety of building structures in high temperature environment. Industrial solid waste is a by-product produced in industrial production. If it is not properly treated, it will have a very negative impact on the ecological environment. Therefore, how to deal with these industrial solid wastes and improve their comprehensive utilization becomes an increasingly urgent problem to be solved. At present, many scholars have studied the preparation of inorganic cementitious materials from industrial solid waste, and found that this kind of inorganic cementitious materials have different characteristics from ordinary silicate cement cementitious materials. Refractory brick powder, silicon powder, slag powder and other industrial solid wastes can improve the high temperature resistance of cementitious materials. Copper slag, as a kind of industrial solid waste with large output, has a huge heap stock due to its low comprehensive utilization ratio, especially in Yunnan Province, where copper mineral resources are abundant. With the production of copper smelting industry, a large amount of copper slag is discharged. In view of the fact that copper slag has the same high temperature production environment and similar chemical composition as fly ash and slag, the inorganic cementitious material prepared by copper slag may also have similar cementitious property, so the inorganic cementitious material prepared by copper slag may also have good high temperature resistance. Based on the above situation, the copper-slag cement composite cementitious material system (CSC) and the alkali excited copper-slag cementitious material system (CSA), were prepared from industrial solid waste copper slag. The material universal testing machine system, X-ray diffractometer and thermogravimetric analyzer were used. The changes of mechanical properties of copper slag cementing materials with temperature rise, the changes of hydration products and the evolution of microstructure were studied by means of scanning electron microscope and other experimental analysis equipment. The results show that: (1) the addition of copper slag has no adverse effect on the properties of the cementing materials compared with the ordinary Portland cement cementitious materials, and the change of mechanical properties at high temperature is consistent; (2) it is different from the cement cementitious materials. The compressive strength of (CSA) increased with the increase of temperature, (3) the main phase components of CSC system and CSA system are different. The main phase components of CSC system are C-S-H and CH, and the main phase components of CSC system are Fe2SiO4 at high temperature. The microstructure and microstructure of Fe2O3 and FeO; (4) CSC system and CSA system under high temperature are different from those of Fe3O4 system at high temperature due to the decomposition of hydration products. Due to the formation of high temperature resistant materials at high temperature, the microstructure and microstructure are more dense and the mechanical properties are recovered and improved. The application of copper slag to the preparation of inorganic cementitious material is beneficial to the utilization of copper slag, and the alkali activated copper slag cementitious material has good high temperature resistance, and can be used in smelting after increasing the strength of the cementitious material. Industrial structures in high temperature environment, such as oil exploitation, and civil structures which are threatened by fire. The results of this paper provide a theoretical basis for the development of high-temperature resistant concrete cementing materials and are expected to be of reference significance in improving the utilization of copper slag and other industrial solid wastes.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU526

【參考文獻】

相關(guān)期刊論文 前10條

1 李濤;張冠軍;;銅礦渣在12000t/d新型干法水泥生產(chǎn)中的應(yīng)用[J];水泥;2016年08期

2 許鴻飛;;火電廠粉煤灰的綜合利用[J];經(jīng)營管理者;2016年21期

3 宿宇;方華峰;;我國粉煤灰相關(guān)政策研究[J];潔凈煤技術(shù);2016年04期

4 吳念;焦葉宏;曾沛源;成昊;張杰;宋謀勝;;電解錳渣的回收再利用現(xiàn)狀與展望[J];廣東化工;2016年09期

5 吳霜;王家偉;劉利;王海峰;趙平源;;電解錳渣綜合利用評述[J];無機鹽工業(yè);2016年04期

6 袁宏濤;貴永亮;張順雨;;鋼渣綜合利用綜述[J];山西冶金;2016年01期

7 徐露;庫建剛;林存鍵;劉向陽;;從銅渣中回收鐵的研究進展[J];現(xiàn)代化工;2016年02期

8 王有團;楊志強;李茂輝;高謙;王永前;;金川銅尾渣粉對充填體強度的影響[J];中南大學(xué)學(xué)報(自然科學(xué)版);2015年12期

9 陳霞;楊華全;石妍;張建峰;;磷渣粉水泥基復(fù)合膠凝體系的水化特性[J];建筑材料學(xué)報;2016年04期

10 商興艷;陸洲導(dǎo);;冷卻方式對高溫后ECC力學(xué)性能的影響[J];湖南大學(xué)學(xué)報(自然科學(xué)版);2015年07期

相關(guān)博士學(xué)位論文 前2條

1 傅博;堿礦渣混凝土耐高溫性能研究[D];重慶大學(xué);2014年

2 朱晶;堿礦渣膠凝材料耐高溫性能及其在工程中應(yīng)用基礎(chǔ)研究[D];哈爾濱工業(yè)大學(xué);2014年

相關(guān)碩士學(xué)位論文 前2條

1 張蕾;錳渣性質(zhì)的研究及無害化處理[D];重慶大學(xué);2012年

2 陳強;高溫對活性粉末混凝土高溫爆裂行為和力學(xué)性能的影響[D];北京交通大學(xué);2010年

,

本文編號:2229400

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2229400.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b2b7f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com