天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 建筑工程論文 >

薄壁卷邊H型鋼受彎構(gòu)件局部屈曲與畸變屈曲的性能分析

發(fā)布時(shí)間:2018-08-26 13:00
【摘要】:最近幾年,薄壁型鋼在我國(guó)越來越流行,各種截面形式的薄壁型鋼大量用于各個(gè)工程之中,國(guó)家也頒布了相應(yīng)的規(guī)范進(jìn)行指導(dǎo)工程人員進(jìn)行設(shè)計(jì)施工。但是,對(duì)于薄壁型鋼來說,由于自身比較薄,一旦做成一定長(zhǎng)度的構(gòu)件,就容易發(fā)生屈曲失穩(wěn)。因此,想要更加完美的使用薄壁型鋼就必須對(duì)屈曲失穩(wěn)具有足夠的了解。對(duì)于普通的H型鋼來說,其翼緣和腹板容易出現(xiàn)屈曲失穩(wěn)導(dǎo)致構(gòu)件的承載力下降,因此必須限制翼緣板的寬厚比和腹板的高厚比,最直接的做法就是增大翼緣和腹板的厚度,但用鋼量也就增加了。在這種情況下,一種新型截面形式的型鋼出現(xiàn)了即薄壁卷邊H型鋼,由于這種構(gòu)件的卷邊起到了加勁的作用,約束了翼緣板的屈曲失穩(wěn)從而提高了構(gòu)件屈曲后的強(qiáng)度。本文簡(jiǎn)單介紹了用于求解薄壁型鋼局部屈曲與畸變屈曲極限承載力的直接強(qiáng)度法與有效寬度法,并通過分析它們之間的優(yōu)缺點(diǎn),建議使用更為簡(jiǎn)單可行的直接強(qiáng)度法。然而,使用直接強(qiáng)度法求解薄壁卷邊H型鋼受彎構(gòu)件發(fā)生屈曲時(shí)的極限承載力需要求得構(gòu)件的彈性屈曲應(yīng)力。一般求解構(gòu)件的彈性屈曲應(yīng)力是通過數(shù)值解法,但是該方法操作復(fù)雜、十分不便。因此,本文將通過有限條軟件CUFSM和有限元軟件ABAQUS對(duì)薄壁卷邊H型鋼受彎構(gòu)件的局部屈曲和畸變屈曲的性能進(jìn)行分析,研究各個(gè)參數(shù)對(duì)受彎構(gòu)件的影響,然后建立局部屈曲應(yīng)力公式和畸變屈曲應(yīng)力公式,便于快速手算出薄壁卷邊H型鋼受彎構(gòu)件發(fā)生局部屈曲與畸變屈曲時(shí)的極限承載力。其中,主要完成了以下主要的創(chuàng)新研究工作:(1)利用有限條CUFSM軟件建立了大量不同尺寸的薄壁卷邊H型鋼受彎構(gòu)件的模型,求出了構(gòu)件的屈曲應(yīng)力從而得到構(gòu)件發(fā)生屈曲時(shí)的抗彎承載力,然后通過觀察其不同卷邊寬厚比、截面寬高比、腹板高厚比、翼緣寬厚比的變化,分析出其對(duì)薄壁卷邊H型鋼受彎構(gòu)件的影響,從而得到參數(shù)的最佳取值范圍將其應(yīng)用于工程之中。(2)通過分析不同參數(shù)對(duì)薄壁卷邊H型鋼受彎構(gòu)件的畸變屈曲影響,建立了適于求解薄壁卷邊H型鋼受彎構(gòu)件臨界畸變屈曲的半波長(zhǎng)公式,并通過驗(yàn)證發(fā)現(xiàn),該公式能夠很好的求出薄壁卷邊H型鋼受彎構(gòu)件臨界畸變屈曲的半波長(zhǎng),為今后研究薄壁卷邊H型鋼受彎構(gòu)件的畸變屈曲提供了支持。(3)利用有限條CUFSM軟件得到了大量薄壁卷邊H型鋼的局部屈曲應(yīng)力和畸變屈曲應(yīng)力,然后利用經(jīng)典板件屈曲應(yīng)力公式求出構(gòu)件的屈曲系數(shù),再用1stopt擬合軟件分別對(duì)局部屈曲系數(shù)以及畸變屈曲系數(shù)進(jìn)行擬合從而得到相應(yīng)的屈曲系數(shù)公式,最后將擬合得到的屈曲系數(shù)公式帶入到經(jīng)典板件屈曲應(yīng)力公式中,繼而得到適合求解薄壁卷邊H型鋼的彈性局部屈曲應(yīng)力公式和彈性畸變屈曲應(yīng)力公式,最后用有限元軟件ABAQUS驗(yàn)證簡(jiǎn)化公式的正確性。
[Abstract]:In recent years, thin-walled section steel is becoming more and more popular in China, various types of thin-walled section steel are widely used in various projects, the country also issued the corresponding code to guide engineers to design and construction. However, for thin-walled steel, the buckling instability is easy to occur once a certain length of member is made. Therefore, in order to use thin-walled steel more perfectly, it is necessary to have a good understanding of buckling instability. For ordinary H-section steel, the flange and web are prone to buckling instability, which leads to the decrease of the bearing capacity of the member. Therefore, the width-thickness ratio of the flange plate and the ratio of the height to thickness of the web must be restricted, and the most direct way is to increase the thickness of the flange and the web. But the amount of steel used increased. In this case, a new type of section steel, that is, thin-walled crimped H-section steel, appears. Because of the stiffening effect of this kind of member, the buckling instability of flange plate is restrained and the strength after buckling of the member is improved. In this paper, the direct strength method and the effective width method for calculating the ultimate bearing capacity of local buckling and distortion buckling of thin-walled steel are briefly introduced. By analyzing the advantages and disadvantages between them, a more simple and feasible direct strength method is suggested. However, the direct strength method is used to calculate the ultimate bearing capacity of thin-walled crimped H-beam members when buckling occurs, and the elastic buckling stress of the members should be obtained. In general, the elastic buckling stress of members is solved by numerical method, but the operation of this method is very complicated. Therefore, through finite strip software CUFSM and finite element software ABAQUS, the local buckling and distortion buckling of thin-walled crimped H-section members are analyzed, and the effects of various parameters on the bending members are studied. Then, the local buckling stress formula and the distorted buckling stress formula are established, which is convenient to calculate the ultimate bearing capacity of thin-walled crimped H-beam bending members under local buckling and distortion buckling. The main contributions are as follows: (1) A large number of thin-walled crimped H-section members with different sizes have been modeled by using finite strip CUFSM software. The buckling stress of the member is obtained to obtain the flexural bearing capacity of the member when buckling occurs, and then the variation of the ratio of width to thickness, the ratio of width to height of section, the ratio of height to thickness of web, and the ratio of width to thickness of flange are observed. The influence of different parameters on the bending member of thin-walled crimped H-section steel is analyzed, and the optimum range of parameters is obtained. (2) the effect of different parameters on the distortion buckling of thin-walled crimped H-section member is analyzed. A half-wavelength formula for calculating the critical distortion buckling of thin-walled crimped H-beam bending members is established, and it is found that the formula can well obtain the half wavelength of the critical distortion buckling of thin-walled crimped H-beam bending members. It provides the support for the study of the buckling distortion of thin-walled crimped H-beam members in the future. (3) A large number of local buckling stresses and distorted buckling stresses of thin-walled crimped H-section steel are obtained by using finite strip CUFSM software. Then the buckling coefficient of the member is obtained by using the classical buckling stress formula, and then the local buckling coefficient and the distortion buckling coefficient are fitted by 1stopt fitting software to obtain the corresponding buckling coefficient formula. Finally, the fitted buckling coefficient formula is introduced into the classical buckling stress formula, and then the elastic local buckling stress formula and the elastic distortion buckling stress formula are obtained, which are suitable for solving thin-walled crimped H-section steel. Finally, the correctness of the simplified formula is verified by finite element software ABAQUS.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU392.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 姚行友;郭彥利;;腹板開圓孔冷彎卷邊槽鋼軸壓構(gòu)件畸變屈曲承載力試驗(yàn)及計(jì)算方法[J];工業(yè)建筑;2016年04期

2 姚永紅;武振宇;;冷彎薄壁型鋼柱畸變屈曲承載力研究[J];工業(yè)建筑;2016年04期

3 石宇;周緒紅;高婷婷;管宇;;雙肢拼合冷彎薄壁型鋼箱形截面梁受彎性能研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2015年11期

4 姚永紅;王鳳維;;開孔冷彎薄壁卷邊槽鋼柱彈性局部屈曲分析[J];建筑結(jié)構(gòu);2015年17期

5 姚行友;李元齊;郭彥利;;冷彎薄壁型鋼卷邊槽形截面構(gòu)件非線性畸變屈曲承載力計(jì)算方法[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年08期

6 李元齊;李功文;沈祖炎;馬越峰;朱少文;;冷彎厚壁型鋼考慮冷彎效應(yīng)的屈服強(qiáng)度計(jì)算方法研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2015年05期

7 楊娜;彭雄;;冷彎薄壁型鋼C型構(gòu)件壓彎屈曲機(jī)理與滯回模型研究[J];土木工程學(xué)報(bào);2015年03期

8 姚行友;李元齊;;冷彎薄壁型鋼卷邊槽形截面構(gòu)件畸變屈曲承載力計(jì)算方法研究[J];工程力學(xué);2014年09期

9 姚行友;李元齊;;冷彎薄壁型鋼卷邊槽形截面構(gòu)件畸變屈曲控制研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2014年06期

10 何子奇;周緒紅;劉占科;陳明;;冷彎薄壁卷邊槽鋼軸壓構(gòu)件畸變與局部相關(guān)屈曲試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2013年11期

相關(guān)重要報(bào)紙文章 前1條

1 ;高頻焊接H型鋼作為鋼結(jié)構(gòu)建筑屋面檁條的獨(dú)特優(yōu)勢(shì)[N];世界金屬導(dǎo)報(bào);2006年

相關(guān)博士學(xué)位論文 前2條

1 羅洪光;冷彎薄壁斜卷邊槽鋼彈性畸變屈曲計(jì)算研究[D];武漢大學(xué);2011年

2 王海明;冷彎薄壁型鋼受彎構(gòu)件穩(wěn)定性能研究[D];哈爾濱工業(yè)大學(xué);2009年

相關(guān)碩士學(xué)位論文 前10條

1 李慧然;正弦波紋腹板H型鋼梁腹板幾何參數(shù)的優(yōu)化研究[D];西南石油大學(xué);2016年

2 藍(lán)宇;冷彎薄壁C型鋼繞弱軸偏心受壓構(gòu)件穩(wěn)定性能研究[D];重慶大學(xué);2015年

3 胡杰文;冷彎薄壁型鋼受彎構(gòu)件的屈曲模態(tài)研究及其在穩(wěn)定承載力設(shè)計(jì)方法中的應(yīng)用[D];重慶大學(xué);2015年

4 溫秋平;翼緣加勁的冷彎薄壁型鋼受彎穩(wěn)定性分析[D];西南石油大學(xué);2014年

5 章陽;冷彎薄壁C形鋼受彎構(gòu)件畸變屈曲和局部屈曲性能研究[D];重慶大學(xué);2014年

6 孫玉婷;冷彎薄壁型鋼夾芯板墻柱軸壓性能研究[D];太原理工大學(xué);2014年

7 高段;冷彎薄壁卷邊槽鋼受彎構(gòu)件畸變屈曲性能研究[D];武漢理工大學(xué);2013年

8 張寵;面向直接強(qiáng)度法的冷彎薄壁柱屈曲模式分析[D];重慶大學(xué);2013年

9 葉嘯飛;卷邊薄壁H型鋼單向受彎構(gòu)件的性能研究[D];山東建筑大學(xué);2013年

10 唐婷婷;冷彎薄壁卷邊槽鋼的畸變屈曲承載力研究[D];浙江大學(xué);2013年



本文編號(hào):2204940

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2204940.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶dc2cd***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com