天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 建筑工程論文 >

熱壓通風(fēng)條件下建筑室內(nèi)濕空氣流動(dòng)特性研究

發(fā)布時(shí)間:2018-07-24 15:59
【摘要】:在我國(guó)南方濕熱地區(qū),城市建設(shè)與經(jīng)濟(jì)都呈高速發(fā)展,城市人口眾多,高層建筑如雨后春筍般拔地而起,夏季空調(diào)除濕降溫需求巨大;深入理解建筑室內(nèi)熱濕遷移機(jī)理是如何選擇合適的樓層居住和辦公以及正確調(diào)節(jié)室內(nèi)熱濕環(huán)境的關(guān)鍵。計(jì)算機(jī)數(shù)值模擬方法具有研究周期較短、信息豐富等諸多優(yōu)勢(shì),本文主要利用計(jì)算流體動(dòng)力學(xué)方法來(lái)探討熱壓自然通風(fēng)條件下建筑室內(nèi)空氣濕環(huán)境流動(dòng)特性。本文首先建立了封閉建筑室內(nèi)自然對(duì)流層流物理模型,數(shù)值分析了室內(nèi)擋板位置、擋板長(zhǎng)度和熱瑞利數(shù)對(duì)自然對(duì)流下室內(nèi)熱濕傳遞的影響,結(jié)果表明在局部傳熱傳濕系統(tǒng)中,隨著垂直擋板長(zhǎng)度的減少,對(duì)流發(fā)揮著越來(lái)越重要的作用。低瑞利數(shù)情況下,擋板位置和長(zhǎng)度對(duì)整個(gè)傳熱傳質(zhì)系統(tǒng)影響較小;隨著瑞利數(shù)的增加,熱濕傳遞速率對(duì)垂直擋板位置不敏感。垂直擋板在抑制熱濕傳遞起主導(dǎo)地位。水平擋板位置在傳熱傳質(zhì)抑制中也起著重要的作用。接著采用模型實(shí)驗(yàn)和數(shù)值模擬的方法研究了室內(nèi)垂直擋板長(zhǎng)度和位置及室內(nèi)外溫差對(duì)室內(nèi)壁面溫度分布的影響,研究表明分層結(jié)構(gòu)與室內(nèi)垂直擋板位置關(guān)聯(lián)度很小;更長(zhǎng)的垂直擋板更有效的干擾流場(chǎng)流動(dòng),對(duì)室內(nèi)對(duì)流換熱影響更大。室內(nèi)外溫差越大,自然通風(fēng)作用的效果就越加明顯。實(shí)驗(yàn)結(jié)果與數(shù)值模擬結(jié)果基本一致。然后又分析探討了熱壓自然通風(fēng)下多層建筑單開(kāi)口室內(nèi)擋板長(zhǎng)度和位置對(duì)室內(nèi)熱濕傳遞的影響,得出垂直擋板越遠(yuǎn)離開(kāi)口,室內(nèi)濕空氣對(duì)流作用越強(qiáng)。提高熱濕傳遞率,垂直擋板位置是最重要的因素。垂直擋板位于室內(nèi)中平面時(shí),室內(nèi)濕空氣對(duì)流作用效果最差。不同樓層,垂直擋板長(zhǎng)度對(duì)室內(nèi)相對(duì)濕度影響不同,在中間層,垂直擋板長(zhǎng)度對(duì)相對(duì)濕度影響很小。垂直擋板在中平面附近時(shí),第一、二層室內(nèi)相對(duì)濕度都存在最小值。而對(duì)于水平擋板,擋板越靠近頂部,每層熱傳遞速率受擋板長(zhǎng)度的影響越小。對(duì)于第一、二層,隨著水平擋板長(zhǎng)度(LH0.75)的增加,擋板的存在幾乎不影響濕傳遞速率。而對(duì)于第三層,在水平擋板位置Dy≤0.4時(shí),更短的水平擋板能夠增強(qiáng)室內(nèi)濕空氣擴(kuò)散作用;相對(duì)濕度分布對(duì)水平擋板位置不敏感。最后計(jì)算探討了高層建筑非封閉室內(nèi)擋板長(zhǎng)度和位置及開(kāi)口策略對(duì)熱壓通風(fēng)下室內(nèi)熱濕傳遞的影響,研究發(fā)現(xiàn)無(wú)論擋板長(zhǎng)度和位置如何,樓層越高,室內(nèi)濕空氣對(duì)流作用愈劇烈;無(wú)論在某一樓層,更長(zhǎng)的垂直擋板對(duì)室內(nèi)對(duì)流換熱影響較大。隨著樓層的升高,相對(duì)濕度受垂直擋板長(zhǎng)度的直接影響越小;垂直擋板下,較高樓層,相鄰樓層之間室內(nèi)相對(duì)濕度相差不大;當(dāng)建筑樓層低于六層時(shí),垂直擋板位于中平面附近時(shí),傳質(zhì)的效果最差。相對(duì)濕度對(duì)垂直擋板位置不敏感。當(dāng)室內(nèi)存在較短的水平擋板時(shí),傳質(zhì)效果最好;隨著樓層的升高,相對(duì)濕度分布受水平擋板長(zhǎng)度和位置的直接影響越大;對(duì)低于六層的建筑而言,更長(zhǎng)的水平擋板對(duì)室內(nèi)濕空氣對(duì)流作用影響較大而擋板位置幾乎不影響室內(nèi)濕傳遞速率;而當(dāng)建筑樓層數(shù)不小于六層時(shí),擋板越靠近底部,室內(nèi)相對(duì)濕度分布受外界濕空氣直接影響的區(qū)域越小。采用雙開(kāi)口通風(fēng)方式,室內(nèi)濕空氣對(duì)流換熱效果更佳,此外隨著樓層的增加,雙開(kāi)口方式下室內(nèi)對(duì)流換熱效果更明顯;對(duì)于樓層數(shù)低于七層的建筑,采用雙開(kāi)口通風(fēng)方式時(shí),室內(nèi)外水分傳遞增強(qiáng),相反當(dāng)建筑樓層數(shù)不小于七層時(shí),采用單開(kāi)口通風(fēng)方式,室內(nèi)外水分傳遞增強(qiáng);當(dāng)建筑樓層高于六層時(shí),隨著樓層的增加,水平擋板下,開(kāi)口方式對(duì)濕傳遞速率的影響減小。南方濕熱地區(qū)自然通風(fēng)建筑熱濕環(huán)境流動(dòng)機(jī)理研究為理解室內(nèi)熱濕耦合自然對(duì)流奠定了基礎(chǔ),提出室內(nèi)裝飾物、家具、隔墻等障礙物的恰當(dāng)布置以及選擇合適的樓層居住和辦公,為建筑通風(fēng)環(huán)境的優(yōu)化設(shè)計(jì)提供了幫助和指導(dǎo),給人們選擇樓層和室內(nèi)安裝提供了一定的參考依據(jù)。探討了熱壓自然通風(fēng)作用下熱濕耦合傳遞機(jī)制,探索利用自然通風(fēng)來(lái)保持建筑室內(nèi)適宜的熱濕環(huán)境。
[Abstract]:In the hot and hot areas in the south of China, the urban construction and economy are developing rapidly, the urban population is large and the high-rise buildings are springing up like bamboo shoots after the rain. The demand of air conditioning dehumidification and cooling in summer is huge. It is the key to understand the mechanism of heat and humidity migration in the building indoor and how to choose the proper floor and office and to adjust the indoor heat and humidity environment correctly. The computer numerical simulation method has many advantages such as short period of study and abundant information. This paper mainly uses computational fluid dynamics to explore the flow characteristics of indoor air wet environment under the condition of hot press and natural ventilation. Firstly, the physical model of indoor flow laminar flow in a closed building is established, and the indoor baffle is numerically analyzed. The effect of the position, the length of the baffle and the number of thermal Rayleigh on the heat and moisture transfer in the indoor heat convection shows that in the local heat transfer system, with the decrease of the length of the vertical baffle, the convection plays a more and more important role. Under the condition of low Rayleigh number, the position and length of the baffle have little influence on the whole heat and mass transfer system. The heat and humidity transfer rate is not sensitive to the position of the vertical baffle. The vertical baffle plays a dominant role in inhibiting the heat and humidity transfer. The position of the horizontal baffle also plays an important role in the heat and mass transfer suppression. Then the model experiment and numerical simulation are used to study the length and position of the indoor vertical baffle and the temperature difference between indoor and outdoor on the interior wall temperature. The influence of the degree distribution shows that the degree of correlation between the stratified structure and the position of the indoor vertical baffle is very small; the longer vertical baffles are more effective to interfere with the flow of the flow field and have greater influence on the convection heat transfer in the room. The greater the indoor and outdoor temperature difference is, the effect of the natural ventilation is more obvious. The experimental results are basically consistent with the numerical simulation results. And then the analysis is also analyzed. The influence of the length and position of the single opening interior baffle on the heat and moisture transfer in the interior of the multi storey building under the hot pressure and natural ventilation is discussed. It is concluded that the more the vertical baffle is far away from the opening, the stronger the convection in the indoor wet air is stronger. The most important factor is to increase the transfer rate of the heat and humidity, and the position of the vertical baffle is the most important factor. The effect of the vertical baffle length on the relative humidity is different in different floors. In the middle layer, the length of the vertical baffle has little influence on the relative humidity. When the vertical baffle is near the middle plane, the relative humidity of the first, second layers has the minimum value. For the horizontal baffle, the closer the baffle is to the top, the heat transfer rate of each layer is blocked. The less influence of plate length. For the first, second layer, with the increase of the horizontal baffle length (LH0.75), the existence of the baffle almost does not affect the wet transfer rate. For the third layer, the shorter horizontal baffle can enhance the indoor wet air diffusion when the horizontal baffle position is Dy less than 0.4; the relative humidity distribution is not sensitive to the horizontal baffle position. The effect of the length and position of the non enclosed interior baffle and the opening strategy on the heat and humidity transmission under the hot pressure ventilation is discussed in the post calculation. It is found that the higher the floor length and the position, the more the floor is, the more severe the indoor wet air convection is, and the longer the vertical baffle has a great influence on the convection heat transfer in a certain floor. With the rise of the floor, the direct influence of the relative humidity on the length of the vertical baffle is smaller; the relative humidity between the vertical baffles, the higher floors and the adjacent floors is not very different; when the building floor is below the six floor, the effect of the mass transfer is the worst when the vertical baffle is near the middle plane. When there is a short horizontal baffle, the mass transfer effect is the best; with the rise of the floor, the distribution of relative humidity is more directly affected by the length and position of the horizontal baffle; for buildings below six layers, the longer horizontal baffles have greater influence on the indoor wet air convection and the position of the baffle almost does not affect the indoor wet transfer rate; When the number of the building is not less than six layers, the closer the baffle is to the bottom, the smaller the area of the indoor relative humidity is directly affected by the external wet air. With the double opening ventilation, the indoor wet air convection heat transfer is better. In addition, with the increase of the floor, the indoor convection heat transfer effect is more obvious under the double opening mode; the number of floors is lower than the floor number of lower than seven floors. On the contrary, when the number of building floors is not less than seven layers, the water transfer between indoor and outdoor is enhanced when the number of building floors is not less than seven layers. When the building floor is higher than the six layer, the influence of the opening mode on the wet transfer rate decreases with the increase of the floor floor and the horizontal baffle. The research on the heat and wet environment flow mechanism of natural ventilation buildings in the area has laid the foundation for understanding the indoor heat and humidity coupling natural convection, and put forward the proper arrangement of indoor ornaments, furniture, partition wall and other obstacles, and the selection of proper floor residence and office. It provides help and guidance for the optimization design of the ventilation environment of the building, and gives people the choice of floor and room. The internal installation provides a certain reference basis. The mechanism of heat and humidity coupling transfer under the action of hot press and natural ventilation is discussed, and natural ventilation is explored to maintain the suitable heat and humidity environment in the building.
【學(xué)位授予單位】:湖南工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TU831.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李林;肖婷;廖婉婷;趙福云;王漢青;;雙開(kāi)口室內(nèi)熱壓自然對(duì)流模擬及熱源分析[J];湖南工業(yè)大學(xué)學(xué)報(bào);2016年02期

2 茅艷婷;張哲娟;熊智淳;孫卓;;鋁合金表面陽(yáng)極氧化處理及膜層的散熱性能[J];材料保護(hù);2014年05期

3 呂琳;韓俊;楊洪興;;濕熱地區(qū)濕空氣遷移導(dǎo)致大空間建筑屋頂結(jié)露的分析[J];暖通空調(diào);2012年12期

4 李魁山;張旭;高軍;;周期性邊界條件下多層墻體內(nèi)熱濕耦合遷移[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期

5 胡敏;陳友明;郭興國(guó);莫志姣;;空氣濕度對(duì)人體舒適感的影響[J];制冷與空調(diào)(四川);2007年03期

6 彭小云;;自然通風(fēng)與建筑節(jié)能[J];工業(yè)建筑;2007年03期

7 楊振;趙滎棵;牟曉梅;;我國(guó)住宅陽(yáng)臺(tái)發(fā)展趨勢(shì)研究[J];建筑設(shè)計(jì)管理;2006年06期

8 陳文;趙福云;湯廣發(fā);劉娣;;耦合墻體擴(kuò)散的室內(nèi)雙擴(kuò)散混合對(duì)流輸運(yùn)過(guò)程[J];暖通空調(diào);2006年08期

9 劉京,姜安璽,李振海;建材吸放濕條件下室內(nèi)環(huán)境的實(shí)驗(yàn)及數(shù)值研究[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年10期

10 張慧,張玉坤,趙曉峰;關(guān)于封閉住宅陽(yáng)臺(tái)空間的分析與思考[J];住宅科技;2001年07期

相關(guān)博士學(xué)位論文 前2條

1 王瑩瑩;圍護(hù)結(jié)構(gòu)濕遷移對(duì)室內(nèi)熱環(huán)境及空調(diào)負(fù)荷影響關(guān)系研究[D];西安建筑科技大學(xué);2013年

2 馬曉鈞;通風(fēng)空調(diào)房間溫濕度和污染物分布規(guī)律及其應(yīng)用研究[D];清華大學(xué);2012年

相關(guān)碩士學(xué)位論文 前3條

1 陳文昌;濕熱地區(qū)自然通風(fēng)建筑濕環(huán)境流動(dòng)機(jī)理研究[D];湖南工業(yè)大學(xué);2015年

2 王松;熱源表面溫度對(duì)熱壓自然通風(fēng)效果的影響研究[D];東華大學(xué);2014年

3 彭昊;建筑圍護(hù)結(jié)構(gòu)調(diào)濕材料理論和實(shí)驗(yàn)的基礎(chǔ)研究[D];同濟(jì)大學(xué);2006年

,

本文編號(hào):2141889

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2141889.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9d84a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com