離子導(dǎo)電砂漿的研發(fā)及性能研究
本文選題:離子導(dǎo)電砂漿 + 電阻率。 參考:《廣州大學(xué)》2017年碩士論文
【摘要】:傳統(tǒng)導(dǎo)電混凝土以鋼纖維、鋼渣、石墨等作為導(dǎo)電相材料,此類材料依靠電子的定向移動而導(dǎo)電,制作時存在導(dǎo)電材料聚團,易生銹等缺點。與傳統(tǒng)導(dǎo)電混凝土不同,離子導(dǎo)電砂漿試件是基于溶液離子在外加電場作用下定向移動而導(dǎo)電的原理制作的,其制作工藝簡單,原材料廉價易得,不會受到聚團和生銹等問題的困擾。由于離子導(dǎo)電砂漿試件的導(dǎo)電機理與傳統(tǒng)導(dǎo)電混凝土的導(dǎo)電機理不同,本文選擇了不同的電解質(zhì)溶液(CuSO4溶液和FeSO4溶液)和電極材料制作離子導(dǎo)電砂漿試件,對其導(dǎo)電性的影響因素開展了研究,并結(jié)合宏觀試驗與微觀試驗的結(jié)果,對離子導(dǎo)電砂漿的配合比、施工工藝和構(gòu)造形式提出了優(yōu)化措施。影響離子導(dǎo)電砂漿試件導(dǎo)電性的基本因素主要有電解質(zhì)溶液的濃度和電解質(zhì)的種類,試件孔隙率,電極種類等。其中,試件孔隙率主要受外加劑種類、摻量、水灰比、齡期等因素的影響,較大的孔隙率可以有效提高滲透效率。本文選擇鋁粉作為外加劑加入水泥砂漿試件以提高試件孔隙率,并對不同養(yǎng)護齡期與水灰比的試件進行了滲透試驗和微觀試驗,試驗結(jié)果表明,隨著齡期的增加,試件內(nèi)部的孔隙會被鈣礬石等水化產(chǎn)物逐漸占據(jù)。當(dāng)水灰比較大時,砂漿流動性較好,砂漿內(nèi)部形成孔徑大小均勻的毛細(xì)連通孔。因此,本文提出制備離子導(dǎo)電砂漿試件的最優(yōu)方案是養(yǎng)護齡期28d且水灰比為0.7。影響離子導(dǎo)電砂漿的另一基本因素為電解質(zhì)溶液的種類與濃度,本文選擇了 CuSO4溶液和FeS04溶液作為導(dǎo)電材料制作離子導(dǎo)電砂漿試件,試驗結(jié)果表明,由于不同的電解質(zhì)溶液濃度存在不同的溶解度,因此也存在不同的最優(yōu)濃度范圍,試件水灰比為0.5時,CuSO4溶液最優(yōu)濃度為2.91%~3.85%, FeSO4溶液最優(yōu)濃度為9.91%~10.71%。在此范圍內(nèi),制備離子導(dǎo)電砂漿試件時滲透效率高,制得的試件導(dǎo)電性能好。本文也選擇了鍍鋅鐵網(wǎng)和銅網(wǎng)作為電極制備離子導(dǎo)電砂漿試件,試驗結(jié)果表明應(yīng)選用交換電流密度大的電極,可以有效緩解極化效應(yīng);不應(yīng)選擇能直接與電解質(zhì)溶液發(fā)生化學(xué)反應(yīng)的電極。試件總齡期(含養(yǎng)護時間和養(yǎng)護期滿后的時間)會對離子導(dǎo)電砂漿試件導(dǎo)電性產(chǎn)生較大影響。隨著齡期的增加試件內(nèi)部水分逐漸消耗和蒸發(fā),電解質(zhì)溶液濃度改變,甚至析出,堵塞孔隙,從而影響試件的導(dǎo)電性。為減少水分蒸發(fā)的不利影響,本文提出將環(huán)氧樹脂輥涂在導(dǎo)電砂漿試件表面,試驗結(jié)果表明輥涂環(huán)氧樹脂的試件電阻率遠(yuǎn)遠(yuǎn)小于沒涂環(huán)氧樹脂的試件。為了進一步保證離子導(dǎo)電砂漿導(dǎo)電性能的穩(wěn)定性,本文提出一種可使離子導(dǎo)電砂漿自動補充電解質(zhì)溶液的構(gòu)造措施,試驗結(jié)果表明,該構(gòu)造可以有效的保證離子導(dǎo)電砂漿電阻率的穩(wěn)定性。
[Abstract]:Traditional conductive concrete uses steel fiber, steel slag, graphite and so on as conductive phase materials. This kind of materials rely on the directional movement of electrons to conduct electricity, and there are some shortcomings in making conductive materials such as conglomeration of conductive materials, easy to rust and so on. Unlike conventional conductive concrete, ionic conductive mortar specimens are made on the basis of the principle of directional moving and conducting of solution ions under the action of an external electric field. The fabrication process is simple, and the raw materials are cheap and easy to obtain. Will not be agglomeration and rust and other problems. Because the conductive mechanism of ionic conductive mortar specimen is different from that of traditional conductive concrete, different electrolyte solutions (CuSO4 solution and FeSO4 solution) and electrode material are selected to make ionic conductive mortar specimen. Based on the results of macroscopic and microscopic tests, the optimization measures for the mix ratio, construction technology and construction form of ionic conductive mortar are put forward. The main factors affecting the conductivity of ionic conductive mortar are the concentration of electrolyte solution, the type of electrolyte, the porosity of the sample, the type of electrode, and so on. Among them, the porosity of the specimen is mainly affected by the kinds of admixture, the amount of admixture, the ratio of water to cement, the age and so on, and the larger porosity can effectively improve the permeability efficiency. In this paper, aluminum powder was used as admixture to increase the porosity of cement mortar. The permeation test and microcosmic test were carried out on the specimens with different curing age and water-cement ratio. The results showed that the porosity of the specimens increased with the increase of age. The pores in the specimen will be gradually occupied by hydration products such as ettringite. When the water ash is large, the fluidity of mortar is better, and the capillary connected holes with uniform pore size are formed inside the mortar. Therefore, the optimal scheme for the preparation of ionic conductive mortar specimens is that the curing age is 28 days and the water-cement ratio is 0.7. Another basic factor affecting ionic conductive mortar is the kind and concentration of electrolyte solution. CuSO4 solution and FeS04 solution are selected as conductive materials to make ionic conductive mortar. The experimental results show that CuSO4 solution and FeS04 solution are used as conductive materials to make ionic conductive mortar. Because different electrolyte solutions have different solubility, so there are different optimal concentration ranges. The optimum concentration of CuSO4 solution is 2.91% and 3.85% when the water-cement ratio is 0.5, and the optimum concentration of FeSO _ 4 solution is 9.91% ~ 10.71%. In this range, the ionic conductive mortar has high permeability and good conductivity. This paper also selected galvanized iron mesh and copper net as electrodes to prepare ionic conductive mortar. The results show that the electrode with high exchange current density can effectively alleviate the polarization effect. Electrodes that can react directly with electrolyte solutions should not be selected. The total age (including curing time and curing time after expiration) will have a great influence on the conductivity of ionic conductive mortar. With the increase of age, the internal water consumption and evaporation, the concentration of electrolyte solution change, even precipitate, clogging the pores, thus affecting the conductivity of the specimen. In order to reduce the adverse effect of water evaporation, the epoxy resin roll is coated on the surface of conductive mortar. The results show that the resistivity of the sample coated with epoxy resin is much lower than that of the specimen without epoxy resin. In order to further ensure the stability of ionic conductive mortar, this paper presents a construction measure which can automatically replenish electrolyte solution of ionic conductive mortar. This structure can effectively guarantee the stability of ionic conductive mortar resistivity.
【學(xué)位授予單位】:廣州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU578.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范道波;趙若紅;徐安;羅寶;;基于滲透試驗的離子導(dǎo)電砂漿工藝優(yōu)化研究[J];混凝土與水泥制品;2016年10期
2 范道波;趙若紅;徐安;吳昱;羅寶;;離子導(dǎo)電砂漿導(dǎo)電性能研究[J];混凝土;2016年05期
3 車蜀濤;方仁玉;但建明;譚偉;齊譽;洪成林;李洪玲;;導(dǎo)電砂漿電阻率穩(wěn)定性的實驗研究[J];石河子大學(xué)學(xué)報(自然科學(xué)版);2015年05期
4 何宗旭;史才軍;胡翔;張家科;;外加電壓下氯離子在水泥基材料中的遷移特性及相互作用的研究進展[J];硅酸鹽學(xué)報;2015年08期
5 趙若紅;區(qū)浩文;傅繼陽;莊志勇;;摻工業(yè)廢棄料導(dǎo)電砂漿電阻率穩(wěn)定性研究[J];材料導(dǎo)報;2015年12期
6 趙若紅;莊志勇;傅繼陽;區(qū)浩文;;摻工業(yè)廢棄料水泥砂漿壓敏性能研究[J];材料導(dǎo)報;2014年18期
7 譚偉;李洪玲;洪成林;但建明;;電解質(zhì)對離子導(dǎo)電混凝土電阻率的影響[J];石河子大學(xué)學(xué)報(自然科學(xué)版);2014年04期
8 莊志勇;趙若紅;傅繼陽;區(qū)浩文;;工業(yè)廢棄料水泥砂漿電磁屏蔽性能研究[J];混凝土與水泥制品;2014年06期
9 趙若紅;甘可;傅繼陽;;鋼纖維石墨導(dǎo)電混凝土比熱的試驗研究[J];混凝土與水泥制品;2014年02期
10 楊群;李旭;王屏;;Resistivity measurement of conductive asphalt concrete based on two-electrode method[J];Journal of Central South University;2013年09期
相關(guān)博士學(xué)位論文 前1條
1 彭軍芝;蒸壓加氣混凝土中孔的形成、特征及對性能的影響研究[D];重慶大學(xué);2011年
相關(guān)碩士學(xué)位論文 前4條
1 黃文婷;水鹽體系冰點實驗研究與計算預(yù)測[D];新疆大學(xué);2015年
2 趙曉剛;水化硅酸鈣的合成及其組成、結(jié)構(gòu)與形貌[D];武漢理工大學(xué);2010年
3 穆新盈;炭黑水泥砂漿板的電熱試驗與傳熱分析[D];武漢理工大學(xué);2008年
4 黃園園;石墨砂漿滲澆鋼纖維混凝土導(dǎo)電性能影響因素的研究[D];大連理工大學(xué);2008年
,本文編號:2111632
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2111632.html