天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 建筑工程論文 >

機(jī)房空調(diào)中不同型式下不同夾角對(duì)翅片管蒸發(fā)器性能影響的研究

發(fā)布時(shí)間:2018-07-03 03:09

  本文選題:機(jī)房空調(diào) + 正、反V型翅片管蒸發(fā)器; 參考:《南京師范大學(xué)》2017年碩士論文


【摘要】:隨著IT行業(yè)在全球的迅速發(fā)展,數(shù)據(jù)中心的高能耗已經(jīng)成為一個(gè)不可忽視的問(wèn)題。對(duì)機(jī)房空調(diào)而言,換熱器作為熱量交換的一個(gè)非常重要的組件,其效率的高低直接影響到制冷系統(tǒng)的性能。因此,節(jié)省能源的有效途徑之一就是加強(qiáng)換熱器的合理設(shè)計(jì)和運(yùn)行管理。本文主要采用商業(yè)軟件FLUENT對(duì)機(jī)房空調(diào)中不同角度的正、反V型翅片管蒸發(fā)器進(jìn)行數(shù)值模擬,得到了兩種型式的翅片管蒸發(fā)器三種角度下(32.5° ,39° ,45.5° )外部空間的溫度場(chǎng)、速度場(chǎng)和迎面風(fēng)速云圖,以及空氣側(cè)換熱量、努塞爾數(shù)和空氣側(cè)的壓降,而且從迎面風(fēng)速不均勻度等方面分析了造成這種差異的原因。本文采用了焓差試驗(yàn)臺(tái)對(duì)模擬結(jié)果進(jìn)行驗(yàn)證。此外,本文還對(duì)不同風(fēng)量和不同相對(duì)濕度的反V型翅片管蒸發(fā)器空氣側(cè)的特性進(jìn)行比較,比較了三種角度在風(fēng)量百分比為100%、90%、80%、70%四種工況下的換熱性能,以及不同相對(duì)濕度對(duì)換熱性能的影響,包括相對(duì)濕度分別為45%、50%、55%和60%的四類(lèi)情況。對(duì)比分析了各種工況下的制冷量和能效比,并且從蒸發(fā)溫度、壓縮機(jī)的吸、排氣溫度和吸、排氣壓力以及冷凝溫度等方面分析造成這種差異的原因。就所進(jìn)行的各項(xiàng)研究,得到了如下的結(jié)論:(1)隨著翅片管換熱器夾角的增大,換熱器空間內(nèi)部的流場(chǎng)越來(lái)越均勻,換熱面的速度分層現(xiàn)象也有一定的減少,高溫區(qū)和低溫區(qū)的區(qū)域都有所減小?諝鈧(cè)努塞爾數(shù)和壓降均呈現(xiàn)上升的趨勢(shì),且正V型式下的努塞爾數(shù)普遍低于反V型式,壓降普遍高于反V型式。(2)換熱器迎面速度分布呈現(xiàn)出相似的變化趨勢(shì),位于風(fēng)機(jī)垂直正下方位置迎面風(fēng)速都是最大,并以此為中心逐漸向外遞減,在換熱器邊緣位置達(dá)到最小。反V型蒸發(fā)器夾角為32.5°、39°和45.5°對(duì)應(yīng)的迎面風(fēng)速不均勻度分別為0.86、0.62 和 0.56。(3)隨著風(fēng)量百分比的降低,三種夾角蒸發(fā)器系統(tǒng)的制冷量都會(huì)減小,而能效比都呈上升趨勢(shì)。且不論風(fēng)量百分比如何變化,夾角為39°和45.5°時(shí),其制冷量和能效比都遠(yuǎn)高于夾角為32.5°的蒸發(fā)器,并且在風(fēng)量百分比為80%和70%時(shí),這種差異更加明顯,與制冷量最高的角度相比,制冷量分別下降了5.7%和6%,能效比分別下降了 3.5%和6.7%。當(dāng)風(fēng)量百分比為70%時(shí),夾角為45.5°的蒸發(fā)器系統(tǒng)的制冷量比夾角為39°的蒸發(fā)器系統(tǒng)的制冷量提高了 3.4%,能效比增加了 3%。(4)隨著相對(duì)濕度的增加,三種角度蒸發(fā)器的制冷量和能效比整體上呈增加趨勢(shì)。當(dāng)風(fēng)量百分比為80%時(shí),夾角為32.5°的蒸發(fā)器在相對(duì)濕度從55%增加到60%時(shí),制冷量和能效比增長(zhǎng)速度較其他各類(lèi)情況都很大。本文對(duì)機(jī)房空調(diào)中不同型式不同角度的正、反V型翅片管蒸發(fā)器進(jìn)行數(shù)值模擬和實(shí)驗(yàn)研究,得到了上面的一些結(jié)論,具有一定的工程實(shí)用價(jià)值以及學(xué)術(shù)意義,為機(jī)房空調(diào)中的蒸發(fā)器設(shè)計(jì)與優(yōu)化提供一定理論依據(jù)。
[Abstract]:With the rapid development of IT industry in the world, the high energy consumption of data center has become a problem that can not be ignored. As a very important component of heat exchange, the efficiency of heat exchanger directly affects the performance of refrigeration system. Therefore, one of the effective ways to save energy is to strengthen the rational design and operation management of heat exchanger. In this paper, the commercial software fluent is used to numerically simulate the positive and inverse V-shaped finned tube evaporators in the air conditioning room. The temperature field in the outer space (32.5 擄/ 39 擄/ 45.5 擄) is obtained for two types of finned tube evaporators (32.5 擄/ 39 擄/ 45.5 擄). The velocity field and face wind speed cloud map, as well as the heat transfer on the air side, the Nusselle number and the pressure drop on the air side are analyzed, and the reasons for the difference are analyzed from the aspects of the inhomogeneity of the face wind speed. In this paper, the enthalpy difference test bench is used to verify the simulation results. In addition, the characteristics of the air side of the reverse Vfinned tube evaporator with different air volume and relative humidity are compared, and the heat transfer performance of three different angles is compared under the four working conditions of 100% air volume, 80% air volume and 70% air volume. And the influence of different relative humidity on heat transfer performance, including four kinds of cases where the relative humidity is 4550% and 60%, respectively. The refrigerating capacity and energy efficiency ratio under various working conditions are compared and analyzed, and the reasons for the difference are analyzed from the aspects of evaporation temperature, compressor suction, exhaust temperature and suction, exhaust pressure and condensing temperature, etc. The conclusions are as follows: (1) with the increase of the angle of finned tube heat exchanger, the flow field in the heat exchanger space becomes more and more uniform, and the velocity stratification of the heat exchanger surface is reduced to a certain extent. The region of high temperature region and low temperature region are decreased. Both the Nussel number and the pressure drop on the air side show an upward trend, and the Nusselle number in the positive V-type is generally lower than that in the anti-V-type, and the pressure drop is generally higher than that in the anti-V-type. (2) the distribution of the head-on velocity of the heat exchanger shows a similar trend. The wind speed is the largest in the vertical and lower position of the fan, and gradually decreases outwards at the center, and reaches the minimum in the edge position of the heat exchanger. The windward wind unevenness corresponding to the angle of 32.5 擄/ 39 擄and 45.5 擄for the reverse V-type evaporator is 0.86 擄0.62 and 0.56 respectively. (3) with the decrease of the air volume percentage, the cooling capacity of the three kinds of angle evaporator systems will decrease and the energy efficiency ratio will increase. Regardless of the percentage of air flow, the refrigerating capacity and the energy efficiency ratio of the evaporator are much higher than those of the evaporator with the angle of 32.5 擄at the angles of 39 擄and 45.5 擄, and the difference is more obvious when the percentage of air volume is 80% and 70%, compared with the angle with the highest refrigerating capacity. The refrigerating capacity decreased by 5.7% and 6% respectively, and the energy efficiency ratio decreased by 3.5% and 6.7%, respectively. When the air volume percentage is 70, the refrigerating capacity of evaporator system with an angle of 45.5 擄is increased by 3.4% and the energy efficiency ratio is increased by 3% than that of evaporator system with an angle of 39 擄. (4) with the increase of relative humidity, The refrigerating capacity and energy efficiency ratio of the three angle evaporators are increasing as a whole. When the air volume percentage is 80 and the evaporator with an angle of 32.5 擄increases from 55% to 60 g relative humidity, the increase rate of cooling capacity and energy efficiency ratio is larger than that of other conditions. In this paper, the numerical simulation and experimental study on the positive and inverse Vfinned tube evaporators of different types and different angles in the air conditioning system of the engine room are carried out, and some conclusions above are obtained, which are of certain engineering practical value and academic significance. It provides some theoretical basis for the design and optimization of evaporator in the air conditioner of engine room.
【學(xué)位授予單位】:南京師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TU831.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 杜鵑;錢(qián)作勤;陳昌;代中元;劉江偉;;多種平直開(kāi)縫翅片換熱特性的數(shù)值研究[J];南京航空航天大學(xué)學(xué)報(bào);2014年04期

2 汪吉平;任能;吳振林;;V形布置換熱器性能優(yōu)化[J];制冷與空調(diào);2013年09期

3 李鳳梅;左建國(guó);鄒媛媛;;波紋翅片管換熱器空氣側(cè)傳熱與流動(dòng)特性的數(shù)值研究[J];節(jié)能;2013年05期

4 鄧維;劉方明;金海;李丹;;云計(jì)算數(shù)據(jù)中心的新能源應(yīng)用:研究現(xiàn)狀與趨勢(shì)[J];計(jì)算機(jī)學(xué)報(bào);2013年03期

5 何緯峰;戴義平;;空冷凝汽器翅片管換熱器阻力特性數(shù)值研究[J];熱力透平;2012年03期

6 錢(qián)曉棟;李震;;數(shù)據(jù)中心空調(diào)系統(tǒng)節(jié)能研究[J];暖通空調(diào);2012年03期

7 李成;李俊明;王補(bǔ)宣;;濕空氣掠過(guò)豎直壁面的凝結(jié)換熱研究[J];哈爾濱工程大學(xué)學(xué)報(bào);2011年05期

8 鹿世化;劉衛(wèi)華;余躍進(jìn);黃虎;;翅片管換熱器內(nèi)部空氣流場(chǎng)的數(shù)值模擬與實(shí)驗(yàn)研究[J];化工學(xué)報(bào);2010年06期

9 田麗亭;何雅玲;雷勇剛;;濕工況下平直翅片對(duì)流傳熱傳質(zhì)數(shù)值研究[J];工程熱物理學(xué)報(bào);2010年04期

10 劉金平;戴紹碧;葉立平;;析濕工況下波紋翅片管換熱器空氣側(cè)換熱與壓降特性[J];化工學(xué)報(bào);2009年10期

相關(guān)碩士學(xué)位論文 前1條

1 羅亮;翅片管換熱器傳熱特性的數(shù)值模擬研究[D];中南大學(xué);2010年

,

本文編號(hào):2092126

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2092126.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)241d0***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com