R417A熱泵熱水器性能及螺旋套管冷凝器換熱研究
本文選題:R417A + 熱泵熱水器。 參考:《西安科技大學(xué)》2017年碩士論文
【摘要】:隨著經(jīng)濟(jì)的快速發(fā)展和人們生活水平的提高,城鄉(xiāng)居民生活熱水的需求量越來越大,形成了一個(gè)量大而面廣的熱水消費(fèi)市場?諝庠礋岜脽崴髯鳛橐环N高效節(jié)能裝置,在國際市場中占據(jù)著重要的位置。利用空氣源熱泵熱水器生產(chǎn)生活熱水不僅可以有效的節(jié)約能源,而且能夠“移峰填谷”,緩解電網(wǎng)緊張狀況,因此在國內(nèi)市場上有著廣闊的發(fā)展空間和應(yīng)用前景。熱泵熱水器運(yùn)行性能的好壞在一定程度上取決于制冷工質(zhì)的特性,R417A臭氧消耗潛值ODP為零,且具有節(jié)能、環(huán)保、高效和替換簡單等特點(diǎn)使其已成為良好的R22的替代物,為目前全世界廣泛接受的環(huán)保制冷劑。冷凝器更是其中的關(guān)鍵部件,它的換熱效果直接影響著整個(gè)熱泵系統(tǒng)的性能。本文搭建了以R417A為工質(zhì)的空氣源熱泵熱水實(shí)驗(yàn)臺(tái),冷凝器采用螺旋套管換熱器,實(shí)驗(yàn)的工況范圍為:水的體積流量為0.6~1.0m3/h,螺旋套管的進(jìn)水溫度為20~55℃。在不同的工況下,研究了環(huán)境溫度為15℃和29℃時(shí),空氣源熱泵熱水器吸熱量、系統(tǒng)性能(COP)、壓縮機(jī)耗功等的變化,螺旋套管內(nèi)制冷劑R417A的凝結(jié)換熱特性,制冷工質(zhì)R417A與R134A、R22在熱泵熱水器運(yùn)行性能的對(duì)比分析。(1)冷凝器入口水溫一定時(shí),冷凝器總換熱量、總換熱系數(shù)隨進(jìn)水流量的增大而增大且環(huán)境溫度越大換熱能力越大。冷凝器進(jìn)水溫度為20℃,環(huán)境溫度為29℃,進(jìn)水流量由0.6m3/h增加到1.0m3/h時(shí),總換熱量、總換熱系數(shù)分別增加了約18.8%、20.6%且環(huán)境溫度為29℃時(shí)總換熱量和總換熱系數(shù)平均比環(huán)境溫度15℃時(shí)高5.2%~9.7%、6.4%~11.7%;直流穩(wěn)態(tài)情況下,冷凝器進(jìn)水溫度為17℃,環(huán)境溫度為29℃,進(jìn)水流量由0.6m3/h增加到1.01.0m3/h,總換熱量、總換熱系數(shù)分別增加了約23.6%、27.8%且環(huán)境溫度為29℃比15℃時(shí)總換熱量、總換熱系數(shù)分別增加了約7.2%、10.5%。(2)冷凝器入口水溫一定時(shí),隨著進(jìn)水流量的增大,壓縮機(jī)吸排氣壓力、輸入功率、熱泵系統(tǒng)的制熱量、制熱系數(shù)COP均增大。進(jìn)水溫度為25℃,環(huán)境溫度為29℃,當(dāng)進(jìn)水流量由0.6m3/h增加到1.0m3/h,壓縮機(jī)吸、排氣壓力和輸入功率分別減少了 5.1%、16.7%、5.3%,熱泵系統(tǒng)的制熱量、制熱系數(shù)COP分別增加了約13.2%、15.2%。環(huán)境溫度29℃相比較于15 ℃壓縮機(jī)吸、排氣壓力分別增加的范圍約51.4%~60.8%、11.3%~13.7%,熱泵系統(tǒng)的制熱量、制熱系數(shù)COP分別增加的范圍約23%~39%、14.6%~23.5%。直流穩(wěn)態(tài)情況下,冷凝器進(jìn)水溫度為17℃,進(jìn)水流量由0.6m3/h增加到1.Om3/h,環(huán)境溫度29℃相比較于15℃時(shí)吸、排氣壓力分別提高約21.3%、28.4%,輸入功率約提高14.8%。(3)冷凝器進(jìn)水流量一定時(shí),隨著進(jìn)水溫度的升高,壓縮機(jī)排氣壓力、輸入功率均增大,熱泵系統(tǒng)的制熱量、制熱系數(shù)COP減小。進(jìn)水流量為0.6m3/h,環(huán)境溫度為29℃,當(dāng)進(jìn)水溫度由25℃上升到55℃時(shí),壓縮機(jī)排氣壓力和輸入功率分別增加了 55%、46.4%,熱泵系統(tǒng)制熱量、制熱系數(shù)COP分別減小了約54%、58.3%。同時(shí)環(huán)境溫度29℃相比較于15℃時(shí)壓縮機(jī)排氣壓力平均提高約14.4%~18.7%,熱泵系統(tǒng)的制熱量、制熱系數(shù)COP 分別平均提高約 18.4%~31.7%、23.6%~39.5%。(4)環(huán)境溫度為15℃,螺旋套管內(nèi)R417A的凝結(jié)換熱系數(shù)隨冷凝飽和溫度的升高而減小,局部凝結(jié)換熱系數(shù)隨干度的增大而增大。當(dāng)冷凝器進(jìn)水流量為0.6 m3/h,飽和冷凝溫度由40℃增加至60℃時(shí),冷凝器制冷劑側(cè)凝結(jié)換熱系數(shù)從3839W/(m2·K)減小至2372W/(m2·K),約減少了 38.1%。當(dāng)冷凝器進(jìn)水流量為0.6m3/h,制冷劑干度由0.7減小至0.1,冷凝飽和溫度分別為40℃、50℃和60℃時(shí),R417A的局部凝結(jié)換熱系數(shù)分別減少了 17.5%、24.1%、29.4%。(5)環(huán)境溫度為15℃,冷凝器進(jìn)水流量為1.0m3/h,R417A、R134a和R22分別在熱泵熱水器螺旋套管冷凝器中運(yùn)行,隨著冷凝器進(jìn)水溫度的升高,壓縮機(jī)吸排氣壓力及輸入功率變化基本一致且R2 2R417 AR13 4 a。螺旋套管換熱器入口水溫為20~55℃,R417A系統(tǒng)的排氣壓力比使用R22低3.68%~4.89%,比使用R134a高27.6%~30.9%;R417A的吸氣壓力比使用R22低14.76%~19.85%,比使用R134a高12.76%~17.85%;R417A系統(tǒng)的輸入功率比使用R22低11.76%~15.85%,比使用R134a高 20.76%~26.85%。(6)環(huán)境溫度為15℃,冷凝器進(jìn)水流量為1.0 m3/h,三種制冷劑的系統(tǒng)制熱量和COP均隨熱水器螺旋套管換熱器進(jìn)水溫度的升高而逐漸減小且制熱量R22R417AR134a和COP R134aR22R417A。螺旋套管換熱器入口水溫為20~55℃,R4117系統(tǒng)的平均制熱量相當(dāng)于R22的88%,R134a系統(tǒng)的平均制熱量相當(dāng) R417A的74%;R417A系統(tǒng)的COP比使用R22低2.45%~3.76%,比使用R134a低4.6%~7.9%。本文的研究成果對(duì)于制冷劑替代中冷凝器的優(yōu)化設(shè)計(jì)與熱泵系統(tǒng)的節(jié)能運(yùn)行都具有十分重要的理論意義和工程應(yīng)用價(jià)值。
[Abstract]:With the rapid development of the economy and the improvement of people's living standards, the demand for hot water in urban and rural residents is becoming more and more large, forming a large and wide hot water consumption market. As an efficient and energy-saving device, air source heat pump water heater occupies an important position in the international market. The use of air source heat pump water heater to produce life Hot water can not only save energy effectively, but also "shift peak to Valley", alleviate the tension of power grid, so it has a broad development space and application prospects in the domestic market. The performance of the heat pump water heater depends to some extent on the characteristics of the refrigerant, the R417A ozone depletion value ODP is zero, and it has energy saving, Environmental protection, high efficiency and simple substitution have made it a good substitute for R22, which is widely accepted worldwide as an environmental refrigerant. Condenser is a key part of it. Its heat transfer effect directly affects the performance of the whole heat pump system. In this paper, an air source heat pump hot water test bench with R417A as the working quality is built, and the condenser is set up. With the use of spiral casing heat exchanger, the experimental conditions are as follows: the volume flow of water is 0.6 ~ 1.0m3/h, and the inlet temperature of the spiral casing is 20~55. Under the different working conditions, the heat absorption of the air source heat pump water heater, the system performance (COP), the power consumption of the compressor and the refrigerant R41 in the spiral casing are studied under different working conditions. The condensation heat transfer characteristics of 7A, the refrigerant R417A and R134A, R22 in the performance of the heat pump water heater. (1) when the inlet water temperature of the condenser is certain, the condenser total heat transfer, the total heat transfer coefficient increases with the increase of the influent flow and the greater the environmental temperature, the greater the heat transfer capacity of the environment. The inlet temperature of the condenser is 20, and the ambient temperature is 29 C. When the flow of water is increased from 0.6m3/h to 1.0m3/h, the total heat transfer and total heat transfer coefficient increase by about 18.8%, 20.6% and the total heat transfer coefficient and total heat transfer coefficient are 5.2% to 9.7%, 6.4% to 11.7% when the ambient temperature is 29 C. Under DC steady state, the water inlet temperature of the condenser is 17, the ambient temperature is 29, and the influent flow is 0.. 6m3/h increased to 1.01.0m3/h, the total heat transfer, the total heat transfer coefficient increased by about 23.6%, 27.8% and the ambient temperature was 29 C at 15 C. The total heat transfer coefficient increased by about 7.2%, 10.5%. (2) when the inlet water temperature of the condenser was certain, with the increase of the inlet flow rate, the pressure of the compressor, the input power, the heat of the heat pump system, The heating coefficient COP increases. The water inlet temperature is 25 C and the ambient temperature is 29. When the influent flow is increased from 0.6m3/h to 1.0m3/h, the compressor suction, the exhaust pressure and the input power are reduced by 5.1%, 16.7%, 5.3%, the heat of the heat pump system and the heat coefficient COP are increased by about 13.2% respectively, and the 15.2%. environment temperature is 29 centigrade compared to the 15 c compressor. The range of exhaust pressure increased by 51.4% to 60.8%, 11.3% to 13.7% respectively, heat of the heat pump system and the increase of heat coefficient COP were about 23% ~ 39% respectively. Under the steady state of 14.6% to 23.5%., the inlet temperature of the condenser was 17, the influent flow was increased from 0.6m3/h to 1.Om3/h, and the ambient temperature 29 was compared to 15 centigrade, and the exhaust pressure was divided. Do not increase about 21.3%, 28.4%. When the input power is raised about 14.8%. (3) the influent flow of the condenser is certain, with the increase of the inlet temperature, the exhaust pressure and the input power of the compressor are increased, the heat of the heat pump system and the thermal coefficient COP decrease. The flow rate is 0.6m3/h, the ambient temperature is 29 C, when the inlet temperature rises from 25 C to 55 C The exhaust pressure and the input power increased by 55%, 46.4%, heat pump system heat, the heat coefficient COP decreased by about 54%, 58.3%. at the same temperature 29, compared with the compressor exhaust pressure increased by about 14.4% to 18.7%, heat pump system heat, heat coefficient COP increased by about 18.4% ~ 31.7%, 23.6% ~ 39., respectively. When the temperature of 5%. (4) is 15, the condensation heat transfer coefficient of R417A in the spiral casing decreases with the increase of condensation saturation temperature. The local condensation heat transfer coefficient increases with the increase of the dry degree. When the flow rate of the condenser is 0.6 m3/h and the saturation condensation temperature increases from 40 to 60 C, the condensation heat transfer coefficient of the refrigerant refrigerant side condensing agent decreases from 3839W/ (m2. K). To 2372W/ (m2. K), the decrease of 38.1%. when the influent flow rate of the condenser is 0.6m3/h, the dry degree of refrigerant is reduced from 0.7 to 0.1, the condensation saturation temperature is 40, 50 and 60, respectively, and the local condensation heat transfer coefficient of R417A is reduced by 17.5%, 24.1%, 29.4%. (5) is 15, and the influent flow of the condenser is 1.0m3/h, R417A, R134a and R22. In the spiral casing condenser of the heat pump water heater respectively, with the increase of the inlet temperature of the condenser, the change of the suction and exhaust pressure and the input power of the compressor is basically the same, and the inlet water temperature of the R2 2R417 AR13 4 A. spiral casing heat exchanger is 20~55. The exhaust pressure ratio of the R417A system is 3.68% to 4.89% lower than that of the use of the R134a, and 27.6% to 30 higher than that of the use of R134a. The suction pressure of.9%, R417A is 14.76% to 19.85% lower than that of R22, 12.76% to 17.85% higher than that of R134a, and the input power of R417A system is 11.76% to 15.85% lower than that of R22, 20.76% to 26.85%. (6) is higher than that of R134a, and the flow rate of condenser is 1 m3/h, and the system heat and COP of the three refrigerants are all with the spiral sleeve of the water heater. The inlet water temperature of the tube heat exchanger is gradually reduced and the inlet water temperature of the heat exchanger R22R417AR134a and COP R134aR22R417A. spiral casing heat exchanger is 20~55 C. The average heat of the R4117 system is equivalent to 88% of R22, the average heat of the R134a system is 74% of the R417A, and the COP of R417A system is 2.45% to 3.76% lower than the R22, and is more than the use R134a. The research results of low 4.6% ~ 7.9%. in this paper are of great theoretical significance and engineering application value for the optimal design of refrigerant substitute for condenser and the energy saving operation of heat pump system.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU822.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 翁文兵;王豐霞;王俊;麻智偉;王健;;R134a和R417A應(yīng)用于熱泵熱水器灌注式替代R22的實(shí)驗(yàn)分析[J];制冷學(xué)報(bào);2011年04期
2 朱倩;徐之平;劉友朋;郭鵬飛;;螺旋套管換熱器傳熱特性研究[J];能源研究與信息;2011年01期
3 鄭嘉耀;金寧;桂秋靜;;R22和R417A應(yīng)用于空氣源熱泵熱水器的性能對(duì)比研究[J];制冷與空調(diào)(四川);2009年06期
4 賈榮林;吳靜怡;;空氣源熱泵熱水器中R417A與R22的性能對(duì)比[J];化工學(xué)報(bào);2008年S2期
5 陳嘉澍;陳姝;卓獻(xiàn)榮;王端陽;徐娓;;R22和R134a應(yīng)用于家用熱泵熱水器實(shí)驗(yàn)性能研究[J];廣東化工;2006年06期
6 李胤,王永鏢,李炳熙;空氣源熱泵熱水機(jī)組季節(jié)性能的實(shí)驗(yàn)研究[J];節(jié)能技術(shù);2005年01期
7 王如竹;吳靜怡;許煜雄;;高效節(jié)電的空氣能熱泵熱水器[J];上海電力;2004年06期
8 徐明仿,馬貞俊,周晉,杜維明;R22的新型綠色替代制冷劑[J];制冷與空調(diào);2004年03期
9 羅清海,湯廣發(fā),龔光彩,湯春芳;建筑熱水節(jié)能中的熱泵技術(shù)[J];給水排水;2004年05期
10 李曉燕,閆澤生;R417a在熱泵熱水系統(tǒng)中替代R22的實(shí)驗(yàn)研究[J];制冷學(xué)報(bào);2003年04期
相關(guān)碩士學(xué)位論文 前1條
1 張潔;空氣源熱泵熱水器的季節(jié)性能優(yōu)化與制冷劑流量特性研究[D];上海交通大學(xué);2007年
,本文編號(hào):2018515
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2018515.html