施工群塔監(jiān)測(cè)智能控制系統(tǒng)研究
本文選題:塔式起重機(jī) + 智能監(jiān)控 ; 參考:《東南大學(xué)》2017年碩士論文
【摘要】:近年來(lái)隨著各類高層、超高層建筑的興起和生產(chǎn)自動(dòng)化程度的提高,塔式起重機(jī)在現(xiàn)代化建筑施工過(guò)程中應(yīng)用越來(lái)越廣、作用越來(lái)越大,并且不斷向大型化、智能化方向發(fā)展。在大型化方面主要是起升高度、變幅幅度越來(lái)越大,起重量不斷增加,這樣就對(duì)塔機(jī)的安全性、可靠性、高效性提出了更高的要求,F(xiàn)代計(jì)算機(jī)技術(shù)、傳感器技術(shù)、無(wú)線通信技術(shù)的飛速發(fā)展為塔機(jī)安全保護(hù)裝置的研制提供了技術(shù)基礎(chǔ)。為此。本文以傳感器技術(shù)、計(jì)算機(jī)技術(shù)和測(cè)控技術(shù)為基礎(chǔ),研制開發(fā)塔機(jī)狀態(tài)實(shí)時(shí)監(jiān)控系統(tǒng),使其更安全、更有效、更平穩(wěn)地作業(yè)。在分析塔機(jī)工作特點(diǎn)和安全監(jiān)測(cè)要求的基礎(chǔ)上,論文討論了吊高、吊重、幅度、回轉(zhuǎn)角度、風(fēng)速、溫濕度等幾種參數(shù)的監(jiān)測(cè)方法,以及對(duì)這些參數(shù)如何進(jìn)行數(shù)據(jù)處理,采用何種方式進(jìn)行顯示。通過(guò)軸銷式起重量傳感器、增量式光電編碼器、絕對(duì)式光電編碼器、風(fēng)速傳感器完成對(duì)起吊重量、起升高度、小車變幅、回轉(zhuǎn)角度、工作現(xiàn)場(chǎng)風(fēng)速等關(guān)鍵參數(shù)的信號(hào)采集。各參數(shù)數(shù)據(jù)可通過(guò)GPRS無(wú)線傳輸方式傳到地面遠(yuǎn)程監(jiān)測(cè)中心,用戶通過(guò)客戶端軟件可實(shí)時(shí)了解塔機(jī)的現(xiàn)場(chǎng)運(yùn)行狀態(tài)、工作環(huán)境及地理位置等信息,對(duì)違規(guī)操作提出報(bào)警,大大方便了工程監(jiān)管人員對(duì)塔機(jī)工作狀態(tài)的監(jiān)視。在通信上使用ZigBee無(wú)線網(wǎng)絡(luò)傳輸技術(shù),分析了 ZigBee無(wú)線通信技術(shù)的協(xié)議構(gòu)架、網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),確定塔機(jī)防碰撞監(jiān)控系統(tǒng)采用網(wǎng)狀網(wǎng)絡(luò)的組網(wǎng)方式。考慮到塔機(jī)的工作環(huán)境比較惡劣,干擾源較多,因而在硬件電路設(shè)計(jì)中,采用光電隔離技術(shù)、去耦技術(shù)、濾波技術(shù)等來(lái)提高系統(tǒng)的可靠性,在軟件設(shè)計(jì)中采用看門狗、數(shù)字濾波等措施來(lái)增強(qiáng)系統(tǒng)的抗干擾能力;趥鞲屑夹g(shù)、智能分析技術(shù)、通訊技術(shù)及信息技術(shù)等開發(fā)的塔機(jī)安全監(jiān)控系統(tǒng),實(shí)現(xiàn)了對(duì)塔式起重機(jī)自身結(jié)構(gòu)安全危險(xiǎn)、與障礙物的碰撞危險(xiǎn)、與多臺(tái)塔式起重機(jī)的協(xié)作碰撞危險(xiǎn)的準(zhǔn)確判別和準(zhǔn)確預(yù)警,并能實(shí)現(xiàn)有效預(yù)警和有效控制,真正有效地減少和降低塔式起重機(jī)安全事故的發(fā)生,提高了塔機(jī)的作業(yè)效率。該系統(tǒng)是在傳統(tǒng)機(jī)械和電子傳感器的基礎(chǔ)上結(jié)合當(dāng)前數(shù)字處理技術(shù)、傳感器技術(shù)、濾波技術(shù)而開發(fā)的一套新型、高可靠的塔式起重機(jī)工作狀態(tài)監(jiān)控系統(tǒng)。該系統(tǒng)具有良好的實(shí)時(shí)性、可靠性以及廣泛的應(yīng)用價(jià)值,符合塔機(jī)監(jiān)控系統(tǒng)小型化、智能化的發(fā)展方向。完備的控制功能、豐富的監(jiān)測(cè)功能、穩(wěn)定的性能、友好的界面和優(yōu)良的性能價(jià)格比,已在現(xiàn)場(chǎng)應(yīng)用取得了良好的效果。
[Abstract]:In recent years, with the rise of various high-rise buildings and the improvement of production automation, tower cranes are more and more widely used in the construction process of modern buildings, and continue to develop towards the direction of large-scale and intelligent. In the aspect of large scale, the rise height, the amplitude of variation is more and more large, and the lifting weight is increasing, which puts forward higher requirements for the safety, reliability and efficiency of the tower crane. The rapid development of modern computer technology, sensor technology and wireless communication technology provides a technical basis for the development of tower crane safety protection device. To this end. Based on sensor technology, computer technology and measurement and control technology, this paper develops a real-time monitoring system for tower crane status, which makes it safer, more effective and more stable. On the basis of analyzing the working characteristics and safety monitoring requirements of tower crane, the paper discusses the monitoring methods of several parameters, such as hoisting height, lifting weight, amplitude, rotation angle, wind speed, temperature and humidity, and how to deal with these parameters. How to display. By means of shaft pin lifting weight sensor, incremental photoelectric encoder, absolute photoelectric encoder and wind speed sensor, the signal collection of the key parameters such as lifting weight, lifting height, vehicle amplitude change, rotation angle, working field wind speed and so on is completed. The parameter data can be transmitted to the ground remote monitoring center by GPRS wireless transmission mode. The users can know the status, working environment and geographical location of the tower crane in real time through the client software, and give an alarm to the illegal operation. It greatly facilitates the monitoring of the working state of the tower crane by the project supervisor. The ZigBee wireless network transmission technology is used in the communication. The protocol framework and network topology of ZigBee wireless communication technology are analyzed. It is determined that the tower crane anti-collision monitoring system adopts the netting mode of mesh network. Considering that the working environment of the tower crane is relatively bad and that there are many sources of interference, the photoelectric isolation technology, decoupling technology and filtering technology are used in the hardware circuit design to improve the reliability of the system, and the watchdog is used in the software design, Digital filtering and other measures to enhance the system's anti-jamming ability. Based on sensing technology, intelligent analysis technology, communication technology and information technology, the tower crane safety monitoring system is developed, which realizes the safety danger of tower crane structure and collision with obstacles. The cooperative collision hazard with multiple tower cranes can accurately distinguish and warn accurately, and can realize effective early warning and effective control, reduce and reduce the occurrence of safety accidents of tower cranes, and improve the efficiency of tower cranes. Based on the traditional mechanical and electronic sensors, this system is a new and reliable monitoring system for the working state of tower cranes, which combines the current digital processing technology, sensor technology and filtering technology. The system has good real time, reliability and wide application value. It is in line with the development direction of miniaturization and intelligence of tower crane monitoring system. Complete control function, rich monitoring function, stable performance, friendly interface and excellent performance-price ratio have achieved good results in field application.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU61
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程江濤;;塔式起重機(jī)監(jiān)控技術(shù)研究[J];中國(guó)市場(chǎng);2016年32期
2 任東;;塔式起重機(jī)防碰撞監(jiān)控的專利技術(shù)綜述[J];黑龍江科技信息;2016年21期
3 張冬;李彥明;劉成良;胡鴻彬;;基于ZigBee的塔式起重機(jī)防碰撞系統(tǒng)研究[J];起重運(yùn)輸機(jī)械;2016年07期
4 倪麗莎;楊靜;惠秦雙;;面向施工現(xiàn)場(chǎng)的塔式起重機(jī)安全監(jiān)控信息系統(tǒng)研究[J];施工技術(shù);2015年18期
5 張翼;耿遠(yuǎn)程;;基于優(yōu)化核算子的塔機(jī)遠(yuǎn)程智能監(jiān)控技術(shù)研究[J];機(jī)電技術(shù);2015年02期
6 謝恩來(lái);;塔式起重機(jī)運(yùn)行狀態(tài)監(jiān)控系統(tǒng)的應(yīng)用[J];電氣傳動(dòng)自動(dòng)化;2015年02期
7 趙磊;;基于無(wú)線傳感器網(wǎng)絡(luò)的塔式起重機(jī)監(jiān)控系統(tǒng)[J];數(shù)字技術(shù)與應(yīng)用;2014年09期
8 劉虎;周蕾;;基于多傳感器的塔式起重機(jī)監(jiān)控儀研究與開發(fā)[J];建筑機(jī)械;2014年03期
9 王勛;周悅;李皓明;;基于無(wú)線傳感器網(wǎng)絡(luò)的塔式起重機(jī)監(jiān)控系統(tǒng)[J];建筑機(jī)械;2013年11期
10 喻樂(lè)康;王如意;;國(guó)際塔式起重機(jī)發(fā)展新態(tài)勢(shì)[J];建設(shè)機(jī)械技術(shù)與管理;2013年02期
相關(guān)碩士學(xué)位論文 前10條
1 周飛虎;塔式起重機(jī)防碰撞技術(shù)與安全監(jiān)控系統(tǒng)研究[D];長(zhǎng)安大學(xué);2015年
2 柯磊;基于WEB平臺(tái)建筑吊塔設(shè)備遠(yuǎn)程監(jiān)控系統(tǒng)的研究與應(yīng)用[D];電子科技大學(xué);2015年
3 高怡;基于風(fēng)險(xiǎn)預(yù)測(cè)的塔式起重機(jī)防碰撞系統(tǒng)研究[D];大連理工大學(xué);2012年
4 余向陽(yáng);基于GPRS的塔式起重機(jī)遠(yuǎn)程監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];湖南大學(xué);2012年
5 宋宇宙;基于ZigBee塔機(jī)無(wú)線傳感監(jiān)控系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];湖南大學(xué);2012年
6 梁凱;基于ARM的塔式起重機(jī)監(jiān)控系統(tǒng)研究與開發(fā)[D];沈陽(yáng)理工大學(xué);2012年
7 邵國(guó)平;塔吊安全監(jiān)測(cè)記錄系統(tǒng)研制[D];哈爾濱理工大學(xué);2010年
8 謝小光;基于GPRS的塔機(jī)實(shí)時(shí)狀態(tài)遠(yuǎn)程監(jiān)控系統(tǒng)研究[D];浙江工業(yè)大學(xué);2009年
9 吳杰;塔式起重機(jī)智能監(jiān)控及故障診斷系統(tǒng)[D];鄭州大學(xué);2005年
10 馬松齡;塔式起重機(jī)運(yùn)行狀態(tài)監(jiān)控系統(tǒng)研究[D];西安建筑科技大學(xué);2005年
,本文編號(hào):1986592
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1986592.html