梁式高位轉(zhuǎn)換層結(jié)構(gòu)抗震性能分析與數(shù)值模擬
本文選題:梁式轉(zhuǎn)換層 + 抗震性能 ; 參考:《石家莊鐵道大學》2017年碩士論文
【摘要】:本文對梁式高位轉(zhuǎn)換層結(jié)構(gòu)的抗震性能進行了補充分析計算和拓展。文中以一個T字形截面的工程模型為例,分別把轉(zhuǎn)換層位置依次設(shè)置在3、5、6、7層,共建立了4個有限元模型。結(jié)構(gòu)層數(shù)均為17層。以下是論文所做的研究工作:(1)本文通過改變結(jié)構(gòu)轉(zhuǎn)換層所在位置對結(jié)構(gòu)進行動力特性以及抗震性能分析。第一步對結(jié)構(gòu)進行模態(tài)分析,對比各個模型的動力性能。第二步利用振型分解反應(yīng)譜法對結(jié)構(gòu)進行分析,以了解結(jié)構(gòu)的抗震性能指標。例如,結(jié)構(gòu)最大層間位移角、樓層最大位移值和樓層的剪力值。通過以上參數(shù)對比總結(jié)歸納轉(zhuǎn)換層布置位置對結(jié)構(gòu)抗震性能影響的差異性。(2)引入層間位移角比的抗側(cè)概念并且介紹其優(yōu)點。為工程設(shè)計人員判斷結(jié)構(gòu)抗側(cè)性能提供一個易用簡便的參數(shù)。通過改變轉(zhuǎn)換層結(jié)構(gòu)不同的設(shè)計參數(shù),來對比發(fā)現(xiàn)層間位移角比與等效剛度比之間的規(guī)律并且通過總結(jié)給出在高位轉(zhuǎn)換時關(guān)于層間位移角比取值系數(shù)的范圍。(3)探究轉(zhuǎn)換層樓板厚度與中梁剛度放大系數(shù)的關(guān)系。通過改變樓板厚度以及改變中梁剛度放大系數(shù)共建立了七個方案,探究其對結(jié)構(gòu)抗震性能以及層間位移角比和等效剛度比的影響。(4)建立層間位移角比為0.81和1.0的兩組模型,每組模型轉(zhuǎn)換層位置分別為3、5、6、7層。通過對比在同一層間位移角比下轉(zhuǎn)換層高度變化對結(jié)構(gòu)抗震性能的影響和在轉(zhuǎn)換層位置不變的前提下,層間位移角比提高對結(jié)構(gòu)抗震性能的影響,歸納總結(jié)出層間位移角比在轉(zhuǎn)換層結(jié)構(gòu)的控制作用。(5)對轉(zhuǎn)換層設(shè)置在6層的高位轉(zhuǎn)換結(jié)構(gòu)進行彈塑性動力和靜力分析,對高位轉(zhuǎn)換結(jié)構(gòu)在罕遇地震下抗震性能給予評價。最后,分別對彈塑性動力和靜力分析的結(jié)果給出相關(guān)建議和加強措施。
[Abstract]:In this paper, the seismic behavior of beam-type high-rise transfer story structure is analyzed and expanded. Taking an engineering model of T-shaped section as an example, four finite element models are established by setting the transfer layer position in turn at 3 ~ 5 ~ 6 ~ 6 ~ 7 stories. The number of layers is 17. The following is the research work done in this paper. (1) in this paper, the dynamic characteristics and seismic performance of the structure are analyzed by changing the position of the transfer story. The first step is modal analysis to compare the dynamic performance of each model. In the second step, the vibration mode decomposition response spectrum method is used to analyze the seismic performance of the structure. For example, the maximum interstory displacement angle, the floor maximum displacement value and the floor shear value. Through the comparison of the above parameters, the difference of the influence of the location of the transfer floor on the seismic performance of the structure is summarized. (2) the anti-lateral concept of the inter-story displacement angle ratio is introduced and its advantages are introduced. It provides an easy to use parameter for engineering designers to judge the anti-lateral performance of the structure. By changing the different design parameters of the transfer layer structure, The relationship between the thickness of the floor slab and the magnification factor of the stiffness of the middle beam is studied by summing up the range of the coefficient of the ratio of the displacement angle of the floor to the ratio of the equivalent stiffness to the ratio of the interstory displacement angle to the ratio of the equivalent stiffness. By changing floor thickness and stiffness magnification factor of middle beam, seven schemes are established, and the effects on seismic performance of structure, displacement angle ratio and equivalent stiffness ratio between floors are investigated. 4) two sets of models with displacement angle ratio of 0.81 and 1.0 are established. The position of the transition layer in each group of models was 3? 5? By comparing the influence of the change of the height of the transfer layer on the seismic performance of the structure under the same displacement angle ratio between the layers and the influence of the increase of the displacement angle ratio of the floor on the seismic performance of the structure under the premise of the invariant position of the transfer floor, The elastoplastic dynamic and static analysis of the transfer structure with six stories is carried out, and the seismic performance of the high-rise transfer structure under rare earthquake is evaluated by summing up the control effect of the inter-story displacement angle ratio on the transfer structure. Finally, some suggestions and strengthening measures are given for the results of elastoplastic dynamic analysis and static analysis respectively.
【學位授予單位】:石家莊鐵道大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU973.31
【參考文獻】
相關(guān)期刊論文 前10條
1 張謹;段小廿;楊律磊;龔敏鋒;鄭志剛;;動力彈塑性分析方法及其在結(jié)構(gòu)設(shè)計中的應(yīng)用[J];建筑結(jié)構(gòu);2016年20期
2 黃慎江;劉海龍;;等效側(cè)向剛度比和轉(zhuǎn)換層位置對梁式轉(zhuǎn)換框支剪力墻抗震性能的影響[J];工程抗震與加固改造;2016年01期
3 許松;來武清;劉志凌;張國印;;時程分析中罕遇地震動的選擇[J];重慶建筑;2015年12期
4 Massimiliano Ferraioli;;Case study of seismic performance assessment of irregular RC buildings: hospital structure of Avezzano(L'Aquila, Italy)[J];Earthquake Engineering and Engineering Vibration;2015年01期
5 涂遠;;預(yù)應(yīng)力混凝土轉(zhuǎn)換梁設(shè)計與施工[J];廊坊師范學院學報(自然科學版);2014年03期
6 魏璉;王森;孫仁范;;高層建筑結(jié)構(gòu)層側(cè)向剛度計算方法的研究[J];建筑結(jié)構(gòu);2014年06期
7 王世村;;搭接柱轉(zhuǎn)換結(jié)構(gòu)設(shè)計研究[J];建筑結(jié)構(gòu);2014年05期
8 劉沛;楊文健;;中美抗震設(shè)計中地震波選取方法比較研究[J];結(jié)構(gòu)工程師;2013年06期
9 李軍方;;轉(zhuǎn)換層結(jié)構(gòu)的研究現(xiàn)狀及發(fā)展趨勢[J];石家莊鐵路職業(yè)技術(shù)學院學報;2012年03期
10 孟亮;;梁式轉(zhuǎn)換層的受力特征與構(gòu)造分析[J];安徽建筑;2012年04期
相關(guān)博士學位論文 前1條
1 榮維生;帶板式轉(zhuǎn)換高層建筑混凝土結(jié)構(gòu)抗震性能研究[D];中國建筑科學研究院;2004年
相關(guān)碩士學位論文 前8條
1 樊虹利;高層結(jié)構(gòu)轉(zhuǎn)換梁受力性能研究[D];西安科技大學;2016年
2 張博;高層建筑梁式轉(zhuǎn)換層結(jié)構(gòu)設(shè)計原理及其應(yīng)用[D];湖南大學;2011年
3 胡亮;框支短肢剪力墻結(jié)構(gòu)轉(zhuǎn)換梁受力性能分析[D];太原理工大學;2011年
4 袁雙喜;帶高位轉(zhuǎn)換框支剪力墻結(jié)構(gòu)抗震性能研究[D];華僑大學;2008年
5 何沛(山侖);高層建筑厚板轉(zhuǎn)換層結(jié)構(gòu)的研究和應(yīng)用[D];西安建筑科技大學;2007年
6 吳從曉;高位轉(zhuǎn)換耗能減震結(jié)構(gòu)體系分析研究[D];廣州大學;2007年
7 尚志海;靜力與動力彈塑性分析在超限高層建筑結(jié)構(gòu)抗震設(shè)計應(yīng)用的研究[D];西安建筑科技大學;2006年
8 陳孟榮;型鋼混凝土梁式轉(zhuǎn)換層的受力性能及設(shè)計探討[D];西安建筑科技大學;2005年
,本文編號:1985903
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1985903.html