土的膨脹性對(duì)微型樁支護(hù)參數(shù)的影響研究
本文選題:微型樁 + 膨脹土滑坡; 參考:《西安工業(yè)大學(xué)》2017年碩士論文
【摘要】:微型樁作為一種新興的邊坡支護(hù)結(jié)構(gòu),具有施工靈活方便、對(duì)地形限定條件要求低、能夠承受較大的軸向載荷和適度的橫向載荷、對(duì)周圍土壤和環(huán)境擾動(dòng)小、經(jīng)濟(jì)效應(yīng)好等特點(diǎn)。但是我國引入微型樁技術(shù)的時(shí)間較短,對(duì)微型樁的受力機(jī)理認(rèn)識(shí)有很大的局限性,導(dǎo)致微型樁在工程實(shí)際中的應(yīng)用缺少技術(shù)指導(dǎo),因此嚴(yán)重制約了微型樁的發(fā)展與推廣。本文主要通過大型物理模型試驗(yàn)研究了膨脹土堆積層滑坡發(fā)生機(jī)理,土的膨脹性對(duì)微型樁支護(hù)參數(shù)的影響,通過監(jiān)測(cè)樁頂位移、樁前土壓力、樁身彎矩等數(shù)據(jù),分析數(shù)據(jù)得到微型樁加固膨脹土堆積層滑坡的合理布設(shè)方式。并將微型樁加固黃土堆積層滑坡與微型樁加固膨脹土堆積層滑坡進(jìn)行對(duì)比,力求獲得一個(gè)可靠的比例系數(shù),使微型樁加固黃土堆積層滑坡與微型樁加固膨脹土堆積層滑坡可以相互參照,可以迅速提出一套治理方案。通過大量的大型物理模型試驗(yàn)研究為微型樁在工程中的應(yīng)用提供理論基礎(chǔ)。1.通過模擬降雨與蒸發(fā),并在滑坡體上進(jìn)行加載試驗(yàn),經(jīng)過三組干濕循環(huán),結(jié)合坡腳位移曲線圖得知:膨脹土遇到降雨開始膨脹,蒸發(fā)時(shí),開始收縮,但是由于其膨脹與收縮的不完全性,導(dǎo)致坡體產(chǎn)生一些細(xì)小的裂縫,隨著干濕循環(huán)的進(jìn)行,降雨不斷沖刷裂縫,裂縫開始擴(kuò)張,同時(shí)雨水的沖刷也會(huì)帶走土體中的細(xì)小顆粒,嚴(yán)重破壞土體結(jié)構(gòu)。當(dāng)在滑坡頂部開始加載時(shí),由于加載量的不斷增加,流入滑體內(nèi)部的水分會(huì)一直滲入堆積層內(nèi)部基巖表面與堆積層接觸的軟弱層(即滑面)附近,雨水形成的水流帶走了土體內(nèi)部的細(xì)小結(jié)構(gòu),土體變得松弛且土體強(qiáng)度急速降低,在荷載的作用下,便沿著軟弱面開始位移,當(dāng)荷載達(dá)到一定量時(shí),產(chǎn)生滑坡;2.通過大型物理模型試驗(yàn),分別在樁間距為8d、10d(d表示微型樁樁徑),排間距為5d、8d、10d的情況下,對(duì)各排測(cè)試樁的樁頂位移、樁前土壓力、樁身彎矩?cái)?shù)據(jù)采集和分析得到:1)樁頂位移方面,當(dāng)樁間距一定時(shí),隨著排間距的增大,樁頂位移逐漸減小;當(dāng)加載至1516kg時(shí),樁間距8d,排間距10d時(shí)的最大樁頂位移為38.632mm,當(dāng)加載至1870kg時(shí),樁間距10d,排間距8d、10d的最大樁頂位移為42.582mm,37.83mm。2)樁前土壓力方面,主要表現(xiàn)為當(dāng)樁間距一定時(shí),隨著排間距的增大,樁前土壓力逐漸減小,5d樁間距情況下樁前土壓力最大,當(dāng)加載至1516kg時(shí),樁間距為8d,排間距10d時(shí),三排樁受力比例為1:0.674:0.554;當(dāng)加載至1870kg時(shí),樁間距為10d,排間距為8d、10d的三排樁受力比例為1:0.738:0.638,1:0.709:0,615。3)樁身彎矩方面,通過觀察樁身彎矩曲線圖發(fā)現(xiàn),距樁頂40cm處和距樁頂60cm處分別出現(xiàn)最大樁身彎矩,并距樁頂60cm處為滑面附近,為微型樁樁身在滑面段設(shè)計(jì)方面提供了指導(dǎo)。3.本文首次提出在樁頂布設(shè)縱橫向"X"型連系梁,經(jīng)過試驗(yàn)研究與僅在微型樁樁頂布設(shè)縱向連系梁樁頂位移相比減小了 14.4%,能夠減少抗滑段樁身彎矩變形,并表現(xiàn)為三排樁作為一個(gè)整體共同承載樁滑坡推力。4.通過微型樁加固黃土堆積層滑坡與微型樁加固膨脹土堆積層滑坡的對(duì)比,并考慮工程實(shí)際情況,認(rèn)為微型樁加固黃土堆積層滑坡與微型樁加固膨脹土堆積層滑坡的比例系數(shù)為1.3~1.5。
[Abstract]:As a new type of slope support structure, micro pile has the characteristics of flexible and convenient construction, low requirement for terrain conditions, large axial load and moderate lateral load, small disturbance to the surrounding soil and environment and good economic effect. However, the time of introducing microtype pile technology in China is short, and the mechanism of micro pile is stressed. It has a lot of limitations, which leads to the lack of technical guidance for the application of micro pile in engineering practice, so it seriously restricts the development and popularization of the micro pile. This paper mainly studies the mechanism of the landslides in the expansive soil pile through the large physical model test, the influence of the expansibility of the soil on the support parameters of the micro pile, and the displacement of the pile top by monitoring the displacement of the pile. In order to obtain a reliable comparison, the micro pile is used to reinforce the landslide of the loess accumulation layer. It can be referred to each other by micro pile reinforcement of expansive soil stacked landslides, and a set of control schemes can be put forward quickly. Through a large number of large physical model tests, a theoretical basis for the application of micro piles in engineering.1. is provided by simulating rainfall and evaporation, and carrying out loading tests on the landslide body, after three groups of dry and wet cycles, combined with the foot position of the slope. It is found that the expansive soil begins to expand when rainfall begins to expand and begins to shrink when evaporation is evaporated, but due to the incompleteness of its expansion and contraction, it causes some fine cracks in the slope body. With the dry and wet cycle, the rain continues to scour cracks, and the cracks begin to expand, and the scour of rain will take away the fine particles in the soil, and it will also take away the small particles in the soil. When the load is added at the top of the landslide, the water flow into the sliding body will penetrate into the weak layer (the slippery surface) of the inner bedrock surface and the accumulation layer. The water formed by the rain takes away the small structure inside the soil, and the soil becomes relaxed and the strength of the soil is rapid. Under the action of load, the displacement is started along the soft surface, and the landslide occurs when the load reaches a certain amount. 2. through the large physical model test, the pile top displacement, the soil pressure before the pile and the bending moment of the pile body are collected and collected at the pile spacing of 8D, 10d (D indicates the micro pile diameter) and the spacing of 5D, 8D, 10d. The analysis is obtained as follows: 1) pile top displacement, when the pile spacing is fixed, the pile top displacement gradually decreases with the increase of row spacing. When loading to 1516kg, the maximum pile top displacement is 38.632mm when the spacing of pile is 8D and spacing 10d. When loading to 1870kg, the pile spacing is 10d, the spacing 8D, the maximum pile top displacement of 10d is 42.582mm, 37.83mm.2) before the pile. The main performance is that the soil pressure in the front of the pile is gradually reduced with the increase of the spacing between the piles and the maximum pressure in the front of the pile with the spacing of 5D piles. When loading to 1516kg, the pile spacing is 8D, and when the distance between the piles is 10d, the force ratio of the three row piles is 1:0.674:0.554; when loading to 1870kg, the pile spacing is 10d, the spacing of 8D and 10d three row piles are received. By observing the bending moment curve of pile body, it is found that the maximum pile bending moment is found at the top of the pile top 40cm and the top of the pile top 60cm, and the distance from the top 60cm of the pile to the sliding surface is found, which provides guidance for the design of the micro pile body in the sliding surface section for the first time in the pile top layout, through the observation of the bending moment curve of the pile body. The transverse "X" type connecting beam has been reduced by 14.4% compared with the displacement of the vertical connecting beam pile top of the micro pile top. It can reduce the bending moment deformation of the anti slide pile body, and shows the three row pile as a whole common bearing pile landslide thrust.4. through the micro pile adding the loess accumulation layer landslide and the micro pile to reinforce the expansive soil. Compared with the actual situation of the engineering, the ratio coefficient of the micro pile reinforcement of the loess accumulation landslide and the micro pile to the expansion of the expansive soil landslides is 1.3 ~ 1.5.
【學(xué)位授予單位】:西安工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU473.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 谷拴成;甄希翠;;微型樁加固邊坡的合理樁間距確定[J];地下空間與工程學(xué)報(bào);2015年06期
2 辛建平;唐曉松;鄭穎人;張冬;;單排與三排微型抗滑樁大型模型試驗(yàn)研究[J];巖土力學(xué);2015年04期
3 孫書偉;陳沖;丁輝;劉英;;微型樁群加固土坡穩(wěn)定性分析[J];巖土工程學(xué)報(bào);2014年12期
4 孫書偉;王家臣;卞曉琳;;Design of micropiles to increase earth slopes stability[J];Journal of Central South University;2013年05期
5 唐咸遠(yuǎn);賈松林;李用鵬;;鋼管群樁處治膨脹土地基引起的路堤滑坡[J];中外公路;2011年05期
6 閆金凱;殷躍平;門玉明;梁炯;;滑坡微型樁群樁加固工程模型試驗(yàn)研究[J];土木工程學(xué)報(bào);2011年04期
7 王樹豐;門玉明;;黃土滑坡微型樁破壞模式研究[J];工程勘察;2010年10期
8 閆金凱;殷躍平;門玉明;;微型樁群樁受力分布規(guī)律及破壞模式的試驗(yàn)研究[J];南水北調(diào)與水利科技;2010年01期
9 孫書偉;朱本珍;馬惠民;楊讓宏;;微型樁群與普通抗滑樁抗滑特性的對(duì)比試驗(yàn)研究[J];巖土工程學(xué)報(bào);2009年10期
10 周德培;王喚龍;孫宏偉;;微型樁組合抗滑結(jié)構(gòu)及其設(shè)計(jì)理論[J];巖石力學(xué)與工程學(xué)報(bào);2009年07期
相關(guān)博士學(xué)位論文 前5條
1 李健;漢中地區(qū)膨脹土工程特性及其滑坡變形機(jī)理基研究[D];西南交通大學(xué);2014年
2 向波;小直徑鋼管排樁抗滑機(jī)理及計(jì)算方法研究[D];西南交通大學(xué);2013年
3 何暉;微型樁加固淺層堆積層膨脹土滑坡機(jī)理與應(yīng)用研究[D];西安科技大學(xué);2013年
4 熊煒;秦巴山區(qū)軟弱變質(zhì)巖淺表層滑坡成因機(jī)理研究[D];長(zhǎng)安大學(xué);2012年
5 閆金凱;滑坡微型樁防治技術(shù)大型物理模型試驗(yàn)研究[D];長(zhǎng)安大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 李棟棟;微型樁加固淺層堆積層滑坡樁身應(yīng)力分布規(guī)律試驗(yàn)研究[D];西安工業(yè)大學(xué);2015年
2 郭智;漢中地區(qū)膨脹土物理力學(xué)性質(zhì)的試驗(yàn)分析及人工配制[D];西安工業(yè)大學(xué);2015年
3 唐永亮;秦巴山區(qū)降雨誘發(fā)淺表層滑坡模型試驗(yàn)研究[D];長(zhǎng)安大學(xué);2014年
4 李燦旭;微型樁受力機(jī)理及應(yīng)用分析[D];重慶交通大學(xué);2014年
5 李志雨;微型樁加固膨脹土滑坡數(shù)值模擬研究[D];西安工業(yè)大學(xué);2014年
6 鄒文龍;微型樁在膨脹土邊坡中的應(yīng)用研究[D];西南交通大學(xué);2013年
7 劉輝;堆積層滑坡機(jī)理及其穩(wěn)定性研究[D];西安工業(yè)大學(xué);2012年
8 劉雁冰;微型樁加固膨脹土滑坡機(jī)理研究[D];西安工業(yè)大學(xué);2012年
9 孫立娟;基于p-y曲線的微型樁計(jì)算理論與應(yīng)用[D];西南交通大學(xué);2011年
10 蘇媛媛;注漿微型鋼管組合樁加固土質(zhì)邊坡模型試驗(yàn)研究[D];中國海洋大學(xué);2010年
,本文編號(hào):1984801
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1984801.html