軸心受力纖維增強(qiáng)復(fù)合材料壓桿的性能研究
本文選題:GFRP + CFRP。 參考:《南京理工大學(xué)》2017年碩士論文
【摘要】:本文依托高性能纖維增強(qiáng)復(fù)合材料-索穹頂結(jié)構(gòu)體系的研究課題,以索穹頂中的纖維增強(qiáng)復(fù)合材料壓桿為研究對(duì)象,對(duì)簡單支承條件下拉擠成型的GFRP和CFRP桿分別進(jìn)行了軸壓受力性能試驗(yàn)和有限元數(shù)值分析。FRP壓桿的端部是容易破壞的薄弱環(huán)節(jié),端部加強(qiáng)會(huì)對(duì)其極限承載力和破壞模式產(chǎn)生很大的影響。本文通過對(duì)比四種不同加強(qiáng)端加強(qiáng)的GFRP短桿試驗(yàn)結(jié)果,提出了經(jīng)濟(jì)有效的聚酯纖維布浸膠加強(qiáng)方法,為后續(xù)長桿的穩(wěn)定性試驗(yàn)奠定了基礎(chǔ)。針對(duì)FRP構(gòu)件不可避免的幾何缺陷,論文結(jié)合試驗(yàn)結(jié)果,采用ABAQUS軟件分析得到了兩種桿的初始缺陷計(jì)算方法。通過對(duì)比兩種壓桿試驗(yàn)的有限元模型分析結(jié)果和試驗(yàn)結(jié)果,驗(yàn)證了引入初始缺陷并結(jié)合二維Hashin準(zhǔn)則進(jìn)行有限元數(shù)值分析的有效性。通過有限元分析得到兩種壓桿可能會(huì)發(fā)生強(qiáng)度、非彈性失穩(wěn)和彈性失穩(wěn)破壞模式之一;簡單支承條件下的GFRP壓桿,徑厚比相同時(shí),極限承載力隨長細(xì)比的增大而減少,且長細(xì)比較小時(shí)下降快,長細(xì)比較大時(shí)下降緩慢。長細(xì)比相同時(shí),徑厚比越大,極限承載力越高,隨著長細(xì)比的增大,徑厚比對(duì)極限承載力的影響會(huì)變?nèi)?相同管徑的CFRP壓桿,構(gòu)件極限應(yīng)力在長細(xì)比較小時(shí)下降較快,在長細(xì)比較大下降相對(duì)平緩,長細(xì)比相同管徑不同時(shí),極限應(yīng)力相差不大。在一定的纖維含量內(nèi),拉擠成型CFRP桿穩(wěn)定承載力與纖維的體積含量基本呈線性增長的關(guān)系。通過ABAQUS數(shù)值計(jì)算得到了文獻(xiàn)修正后的歐拉公式近似求解拉擠成型CFRP長桿極限承載力的適用范圍,并畫出了簡單支承條件下拉擠成型CFRP桿的抗壓極限強(qiáng)度與λ的關(guān)系曲線。
[Abstract]:In this paper, based on the research topic of high performance fiber reinforced composite material cable dome structure system, the fiber reinforced composite compression rod in cable dome is taken as the research object. The axial compression behavior tests and finite element numerical analysis of the GFRP and CFRP rods formed by pull-down extrusion with simple support conditions were carried out respectively. The end part of the GFRP compression bar is a weak link which is easy to be destroyed. End reinforcement has great influence on ultimate bearing capacity and failure mode. By comparing the test results of four kinds of GFRP short bar strengthened with different strengthening ends, this paper presents an economical and effective strengthening method of polyester fiber cloth impregnated glue, which lays a foundation for the stability test of the following long rod. In view of the inevitable geometric defects of FRP members, two methods for calculating the initial defects of rods are obtained by ABAQUS software analysis combined with the experimental results. By comparing the results of finite element model analysis and experimental results of two kinds of compression bar tests, the validity of finite element numerical analysis by introducing initial defects and combining with two-dimensional Hashin criterion is verified. Through finite element analysis, it is found that one of the failure modes of strength, inelastic instability and elastic instability may occur in two kinds of compression rods, and the ultimate bearing capacity of GFRP compression bar decreases with the increase of aspect ratio when the ratio of diameter to thickness is the same under the condition of simple support. And the length of the smaller than the drop faster, the longer the larger the decline is slow. At the same aspect ratio, the higher the ratio of diameter to thickness, the higher the ultimate bearing capacity. With the increase of aspect ratio, the influence of the ratio of diameter to thickness on ultimate bearing capacity becomes weaker, and the ultimate stress of CFRP compression rod with the same diameter decreases more quickly when the ratio of length to diameter increases. When the ratio of length to fineness decreases relatively slowly, and the ratio of length to diameter is different, the ultimate stress is not different. In a certain fiber content, the stable bearing capacity of pultrusion forming CFRP rod is linearly increased with the volume content of fiber. Through the ABAQUS numerical calculation, the suitable range of the ultimate bearing capacity of the long CFRP rod formed by pullout is approximately solved by the modified Euler formula, and the relation curve between the ultimate compressive strength and 位 of the CFRP rod formed by pull-down extrusion with simple supporting conditions is drawn.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU399
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 卜樂宏;呂爭青;;拉擠成型玻璃鋼托架的濕熱老化性能及使用壽命[J];上海第二工業(yè)大學(xué)學(xué)報(bào);2007年02期
2 王艷;;玻璃鋼門窗型材的拉擠成型工藝及模具[J];化學(xué)建材;2009年05期
3 ;拉擠成型的變壓器撐條[J];變壓器;1997年08期
4 蘇峰;拉擠成型玻璃鋼窗框的應(yīng)用與發(fā)展[J];纖維復(fù)合材料;2001年02期
5 ;[J];;年期
相關(guān)會(huì)議論文 前8條
1 龍友q;;玻璃鋼拉擠成型模具技術(shù)概要[A];第十屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];1993年
2 ;上海斯尼特塑鋼有限公司[A];第十一屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];1995年
3 李文仿;劉輝;方敏;張明輝;;玻璃鋼夾芯板拉擠成型技術(shù)研究[A];第十七屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];2008年
4 楊澄;陸輝;;大型玻璃鋼方管拉擠成型的工藝方法[A];第十三屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];1999年
5 陳博;;碳纖維復(fù)合材料制品拉擠成型技術(shù)[A];第五屆玻璃鋼/復(fù)合材料新技術(shù)新材料高層論壇論文匯編[C];2013年
6 馬毓;趙啟林;魏鵬;江克斌;;拉擠成型復(fù)合材料螺栓連接接頭破壞模式試驗(yàn)研究[A];第十八屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];2010年
7 楊o,
本文編號(hào):1954640
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1954640.html