非極限位移模式下錨拉式擋土墻土壓力計算方法研究
發(fā)布時間:2018-05-29 03:56
本文選題:錨拉式擋土墻 + 土壓力。 參考:《山東大學》2017年碩士論文
【摘要】:擋土墻墻背側(cè)向土壓力的大小和分布與土和擋土墻之間的相互作用密切相關(guān),擋土墻的位移模式、位移大小對土壓力的大小和分布規(guī)律產(chǎn)生重要影響,現(xiàn)有錨拉式擋土墻計算土壓力主要采用只能采用用于計算極限狀態(tài)庫倫土壓力或郎肯土壓力理論進行計算,而錨拉式擋土墻由于受到預應力錨桿的側(cè)向約束作用,墻體側(cè)向變形及位移受到限制,墻后填土尚未達到極限狀態(tài),其計算條件與極限狀態(tài)差異較大。因此本文采用模型試驗的方法,結(jié)合數(shù)值計算方法,在已有研究理論的基礎(chǔ)上提出了非極限位移模式下錨拉式擋土墻土壓力計算方法。得出主要結(jié)論如下:1、懸臂式擋土墻,在上覆荷載作用下,墻體呈現(xiàn)T模式外傾位移,墻背側(cè)向土壓力呈峰值在墻體中部的拋物線型分布,土壓力為1.5倍靜止土壓力;在側(cè)向位移作用下墻體呈現(xiàn)RBT模式位移,墻背側(cè)向土壓力呈非線性分布,符合剛性擋土墻土壓力分布規(guī)律,土壓力計算推薦采用盧坤林計算方法。2、無預應力錨拉式擋土墻,在上覆荷載作用下,墻體呈現(xiàn)T模式外傾位移,墻背側(cè)向土壓力呈峰值在錨桿位置處的拋物線分布,推薦錨桿設(shè)置高度為0.5H(H為墻高),土壓力為0.8倍靜止土壓力;在主動側(cè)向位移作用下,墻體呈RB模式外傾位移,墻背側(cè)向土壓力亦呈非線性分布,錨桿可顯著限制墻體側(cè)向位移,計算方法亦推薦采用盧坤林計算方法。3、預應力錨拉式擋土墻,在預應力作用下,墻體呈現(xiàn)T模式內(nèi)傾位移,墻背土壓力呈現(xiàn)峰值在錨桿位置處的更為明顯的拋物線分布,且與預應力呈線性關(guān)系,最佳預應力應以墻體位移回到填土前位置作為控制標準,土壓力計算推薦采用擬合公式:P=(-16.702h2 +12.836h+ 0.4201)p+K0γz。錨桿最優(yōu)布置位置為墻體中心,上覆荷載與預應力協(xié)同作用下土拱效應峰值與分布范圍顯著增大。4、隨距墻體中心橫向距離的增大,錨拉式擋土墻墻背側(cè)向土壓力逐漸減小,橫向應力拱現(xiàn)象較為明顯,其影響范圍約為1/3墻寬,且錨桿位置處由于錨桿作用,土拱效應更為明顯,土壓力衰減最大。
[Abstract]:The magnitude and distribution of the earth pressure in the back of the retaining wall are closely related to the interaction between the soil and the retaining wall. The displacement mode and displacement magnitude of the retaining wall have an important influence on the magnitude and distribution of the earth pressure. The existing anchor and pull retaining wall is mainly used to calculate the earth pressure, which can only be used to calculate the limit state Coulomb earth pressure or Rankine earth pressure. However, the anchor and pull retaining wall is subjected to the lateral restraint of the prestressed anchor. The lateral deformation and displacement of the wall are restricted, and the limit state of the backfill is not reached, and the calculation conditions are quite different from the limit state. In this paper, the method of model test and numerical calculation are used to calculate the earth pressure of anchor retaining wall under non-limit displacement mode. The main conclusions are as follows: 1, cantilever retaining wall, under the action of overlying load, the wall presents T-mode extroversion displacement, the lateral earth pressure on the back of the wall is a parabolic distribution of peak value in the middle of the wall, and the earth pressure is 1.5 times static earth pressure; Under the action of lateral displacement, the wall presents RBT mode displacement, and the lateral earth pressure on the back of the wall presents a nonlinear distribution, which accords with the law of the earth pressure distribution of the rigid retaining wall. Lukunlin calculation method is recommended to calculate the earth pressure, and the unprestressed anchor pull retaining wall is recommended to be used in the earth pressure calculation. Under the action of overburden load, the wall presents T-mode extroversion displacement, and the lateral earth pressure at the back of the wall exhibits parabola distribution of peak value at the position of anchor rod. The recommended height of anchor rod is 0.5H(H as wall height and earth pressure as 0.8 times static earth pressure. Under the action of active lateral displacement, the wall is obliquely inclined in RB mode, and the lateral earth pressure on the back of the wall is also nonlinear distributed. The anchor rod can significantly limit the lateral displacement of the wall. It is also recommended that Lu Kunlin's calculation method .3, prestressed anchor and pull retaining wall be used. Under the action of prestress, the wall presents a T-mode internal displacement, and the earth pressure on the back of the wall presents a more obvious parabola distribution of peak value at the position of the anchor rod. The optimum prestress should take the displacement of the wall back to the position before filling as the control standard, and the fitting formula of the earth pressure should be adopted as the fitting formula: 1 / Pang-16.702h212.836h 0.4201p K0 緯 z. The optimum location of anchor rod is the center of wall. The peak value and distribution range of soil arch effect increase significantly under the synergistic action of overburden load and prestress. With the increase of transverse distance from the wall center, the lateral earth pressure on the back of anchor and pull retaining wall decreases gradually. The phenomenon of transverse stress arch is obvious, the influence range is about one third of the wall width, and the soil arch effect is more obvious and the earth pressure attenuation is the most obvious because of the anchor rod action at the anchor rod position.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU476.4
【相似文獻】
相關(guān)期刊論文 前10條
1 徐向輝;;土工分析中土壓力計算方法與應用探討[J];甘肅科技縱橫;2006年01期
2 魯瑞林;張永興;王桂林;胡居義;;山區(qū)高填涵頂垂直土壓力現(xiàn)場測試及計算研究[J];西部探礦工程;2006年12期
3 屈兆均;;也談《活,
本文編號:1949393
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1949393.html
最近更新
教材專著