大跨弦支穹頂環(huán)索預(yù)應(yīng)力設(shè)計(jì)方法及結(jié)構(gòu)優(yōu)化設(shè)計(jì)
本文選題:弦支穹頂結(jié)構(gòu) + 預(yù)應(yīng)力比; 參考:《廣州大學(xué)》2017年碩士論文
【摘要】:弦支穹頂是由單層網(wǎng)殼和索-撐體系組合而成的輕度預(yù)應(yīng)力大跨空間結(jié)構(gòu),其受力性能好、跨越空間距離大、造型優(yōu)美;目前已廣泛用于航站樓、體育場(chǎng)館、會(huì)展中心等大型公共設(shè)施屋蓋中,如2008年北京奧運(yùn)會(huì)羽毛球館、濟(jì)南奧體中心體育館等屋蓋結(jié)構(gòu)均為這種結(jié)構(gòu)體系。弦支穹頂結(jié)構(gòu)設(shè)計(jì)的核心就是確定最佳環(huán)索預(yù)應(yīng)力;過(guò)大或過(guò)小的環(huán)索預(yù)應(yīng)力,都將嚴(yán)重影響結(jié)構(gòu)的受力性能及結(jié)構(gòu)耗鋼量等方面。為了確定弦支穹頂結(jié)構(gòu)最優(yōu)的預(yù)應(yīng)力設(shè)計(jì)方案,本文選取幾何法及撐桿控制面積法確定環(huán)索預(yù)應(yīng)力比,選取支座徑向位移相等準(zhǔn)則及網(wǎng)殼頂點(diǎn)豎向位移相等準(zhǔn)則確定環(huán)索預(yù)應(yīng)力幅值,將它們進(jìn)行交叉組合構(gòu)成4個(gè)環(huán)索預(yù)應(yīng)力設(shè)計(jì)方案。另外還選取剛性索法及改進(jìn)剛性索法作為環(huán)索預(yù)應(yīng)力設(shè)計(jì)方案,共6個(gè)預(yù)應(yīng)力設(shè)計(jì)方案;以2008年北京奧運(yùn)會(huì)羽毛球館弦支穹頂結(jié)構(gòu)屋蓋為研究背景;研究了各個(gè)預(yù)應(yīng)力設(shè)計(jì)方案的優(yōu)缺點(diǎn)和工程適用性。采用ANSYS優(yōu)化模塊零階優(yōu)化方法對(duì)弦支穹頂結(jié)構(gòu)進(jìn)行預(yù)應(yīng)力優(yōu)化設(shè)計(jì)。即:以結(jié)構(gòu)總重量為目標(biāo)函數(shù),考慮構(gòu)件的長(zhǎng)細(xì)比、強(qiáng)度應(yīng)力、穩(wěn)定應(yīng)力和結(jié)構(gòu)位移等約束,考慮12個(gè)結(jié)構(gòu)設(shè)計(jì)荷載工況,針對(duì)不同的環(huán)索預(yù)應(yīng)力設(shè)計(jì)方案,基于ANSYS-APDL編程語(yǔ)言編制了弦支穹頂結(jié)構(gòu)優(yōu)化設(shè)計(jì)程序,充分考慮了預(yù)應(yīng)力與構(gòu)件截面的相互影響,實(shí)現(xiàn)了弦支穹頂結(jié)構(gòu)優(yōu)化設(shè)計(jì)過(guò)程中環(huán)索預(yù)應(yīng)力和構(gòu)件截面同時(shí)優(yōu)化的目標(biāo)。為了提高弦支穹頂結(jié)構(gòu)優(yōu)化設(shè)計(jì)程度,首次提出改進(jìn)罰函數(shù)優(yōu)化設(shè)計(jì)方法,并將改進(jìn)罰函數(shù)優(yōu)化方法和傳統(tǒng)優(yōu)化方法的優(yōu)化結(jié)果進(jìn)行綜合對(duì)比分析;研究表明:改進(jìn)罰函數(shù)優(yōu)化方法可有效提高了結(jié)構(gòu)的優(yōu)化程度,以撐桿控制面積法確定環(huán)索預(yù)應(yīng)力比,以支座徑向位移相等準(zhǔn)則確定環(huán)索預(yù)應(yīng)力幅值,所獲得的結(jié)構(gòu)重量最輕同時(shí)結(jié)構(gòu)水平與豎向剛度也最大。為了更深入全面的研究弦支穹頂結(jié)構(gòu)的靜力性能,本文詳細(xì)探討了包括結(jié)構(gòu)矢跨比、撐桿長(zhǎng)度、預(yù)應(yīng)力大小、撐桿面積、環(huán)索面積等參數(shù)對(duì)其靜力性能的影響;以期為今后弦支穹頂結(jié)構(gòu)的工程設(shè)計(jì)和實(shí)際應(yīng)用提供有價(jià)值的參考。
[Abstract]:The chord dome is a light prestressed long-span spatial structure composed of single-layer reticulated shell and cable-bracing system. It has good mechanical performance, has a long span of space and has beautiful shape. At present, it has been widely used in terminal buildings, stadiums and stadiums. The roof structure of large public facilities such as Beijing 2008 Olympic Feather Hall and Jinan Olympic Sports Center Gymnasium is this kind of structure system. The core of the design of chord dome structure is to determine the optimum ring cable prestress, which will seriously affect the mechanical performance of the structure and the steel consumption of the structure. In order to determine the optimal prestress design scheme of the dome structure, the geometric method and the bracing control area method are selected to determine the prestressing ratio of the ring cable. The radial displacement equality criterion of support and the vertical displacement equality criterion of the vertex of reticulated shell are selected to determine the prestressing amplitude of ring cable, and four design schemes of ring cable prestress are constructed by cross combination of them. In addition, the rigid cable method and the improved rigid cable method are selected as the design scheme of the ring cable prestressing force, six prestressing design schemes are selected, and the research background is the roof of the domes of the Feather Hall of the Beijing Olympic Games in 2008. The advantages and disadvantages of each prestress design scheme and its engineering applicability are studied. The zero order optimization method of ANSYS optimization module is used to optimize the prestressed design of the dome structure. That is, taking the total weight of the structure as the objective function, considering the constraints of the aspect ratio, the strength stress, the stability stress and the displacement of the structure, 12 structural design load conditions are considered, and different design schemes of the ring cable prestress are considered. Based on the ANSYS-APDL programming language, the optimization design program of the domes structure is developed, which fully considers the interaction between the prestress and the section of the members, and realizes the goal of the optimization of the cable prestress and the section of the members during the optimum design of the domes. In order to improve the degree of optimal design of the dome structure, an improved penalty function optimization method is proposed for the first time, and the optimization results of the improved penalty function optimization method and the traditional optimization method are compared and analyzed synthetically. The study shows that the improved penalty function optimization method can effectively improve the optimization degree of the structure. The ratio of ring cable prestress is determined by the method of bracing control area, and the amplitude of ring cable prestress is determined by the criterion of equal radial displacement of support. The weight of the structure is the lightest and the horizontal and vertical stiffness of the structure is also the largest. In order to study the static performance of the chord dome structure more thoroughly, this paper discusses in detail the influence of the parameters including the rise-span ratio of the structure, the length of the brace, the size of prestress, the area of the brace and the area of the ring cable on the static performance of the dome. In order to provide valuable reference for the engineering design and practical application of the dome structure in the future.
【學(xué)位授予單位】:廣州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU399
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于敬海;張們們;;分塊布置環(huán)索的弦支穹頂結(jié)構(gòu)性能分析[J];工業(yè)建筑;2016年08期
2 丁明珉;羅斌;陳項(xiàng)南;郭正興;管東芝;;低矢跨比類橢圓形弦支穹頂結(jié)構(gòu)穩(wěn)定性能分析(英文)[J];Journal of Southeast University(English Edition);2016年01期
3 白記東;;大跨弦支穹頂結(jié)構(gòu)的風(fēng)振響應(yīng)分析[J];四川建筑科學(xué)研究;2015年06期
4 符申超;周德源;王慶春;;弦支穹頂結(jié)構(gòu)預(yù)應(yīng)力優(yōu)化方法[J];鋼結(jié)構(gòu);2015年11期
5 于敬海;王政凱;閆翔宇;丁永君;何彩云;于泳;;天津中醫(yī)藥大學(xué)新建體育館屋蓋弦支穹頂結(jié)構(gòu)設(shè)計(jì)[J];建筑結(jié)構(gòu);2015年16期
6 陳志華;;張弦結(jié)構(gòu)體系研究進(jìn)展及發(fā)展展望[J];工業(yè)建筑;2015年08期
7 王春江;肖華裕;李向民;蔣利學(xué);許清風(fēng);;張弦梁結(jié)構(gòu)形態(tài)分析方法的改進(jìn)[J];天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版);2015年S1期
8 劉樹堂;;鉸接半剛性結(jié)構(gòu)找形與找力分析的非線性有限元方法[J];建筑鋼結(jié)構(gòu)進(jìn)展;2015年03期
9 尚仁杰;;基于位移控制的弦支穹頂預(yù)應(yīng)力計(jì)算方法[J];鋼結(jié)構(gòu);2015年05期
10 王飛;倪建公;;弦支穹頂結(jié)構(gòu)形態(tài)分析與施工控制[J];蘭州理工大學(xué)學(xué)報(bào);2015年02期
相關(guān)會(huì)議論文 前3條
1 田國(guó)偉;劉金鵬;劉興業(yè);尹越;;弦支穹頂結(jié)構(gòu)中預(yù)應(yīng)力的設(shè)定原則[A];第二屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2002年
2 劉學(xué)春;張愛(ài)林;;粒子群算法在預(yù)應(yīng)力鋼結(jié)構(gòu)優(yōu)化設(shè)計(jì)中的應(yīng)用[A];第九屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2009年
3 付智強(qiáng);高博青;張瑞;;弦支穹頂結(jié)構(gòu)預(yù)應(yīng)力設(shè)定方法探討[A];第九屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2009年
相關(guān)博士學(xué)位論文 前3條
1 劉紅波;弦支穹頂結(jié)構(gòu)施工控制理論與溫度效應(yīng)研究[D];天津大學(xué);2011年
2 張國(guó)發(fā);弦支穹頂結(jié)構(gòu)施工控制理論分析與試驗(yàn)研究[D];浙江大學(xué);2009年
3 張明山;弦支穹頂結(jié)構(gòu)的理論研究[D];浙江大學(xué);2004年
相關(guān)碩士學(xué)位論文 前1條
1 阮智健;基于改進(jìn)PGSA的預(yù)應(yīng)力鋼結(jié)構(gòu)優(yōu)化設(shè)計(jì)及其拉索索力識(shí)別方法研究[D];華南理工大學(xué);2015年
,本文編號(hào):1943923
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1943923.html