基于磁—溫梯度的供熱管道檢測(cè)技術(shù)研究
本文選題:管道泄漏 + 熱力管道非開(kāi)挖檢測(cè) ; 參考:《南昌航空大學(xué)》2017年碩士論文
【摘要】:隨著我國(guó)北方供熱管線管齡的增長(zhǎng),近年來(lái)城市熱力管道出現(xiàn)了較多腐蝕泄漏問(wèn)題,給城市供暖造成困難,且給供暖企業(yè)帶來(lái)較大的經(jīng)濟(jì)損失。但目前,國(guó)內(nèi)許多城市在供暖管道的泄漏定位方面特別缺乏專(zhuān)用的檢測(cè)設(shè)備。針對(duì)上述情況,首先,課題通過(guò)對(duì)磁-溫梯度檢測(cè)原理進(jìn)行相關(guān)的探討和對(duì)熱力管道失效原因進(jìn)行分析,從理論上確立了磁-溫梯度檢測(cè)方法對(duì)城市供熱管道泄露定位進(jìn)行在役非開(kāi)挖檢測(cè)具有可行性。其次,對(duì)熱力管道發(fā)生泄露時(shí)的磁場(chǎng)和溫度信號(hào)進(jìn)行計(jì)算機(jī)仿真,發(fā)現(xiàn)熱力管道泄漏時(shí),磁場(chǎng)信號(hào)和溫度信號(hào)均發(fā)生了一定的變化,從理論數(shù)據(jù)上證明了熱力管道在發(fā)生泄漏時(shí)通過(guò)探測(cè)磁場(chǎng)和溫度信號(hào)的變化對(duì)泄漏點(diǎn)進(jìn)行定位具有可能性。第三,在提離1.5m的情況下對(duì)含有特定刻槽缺陷的管道進(jìn)行弱磁檢測(cè)實(shí)驗(yàn),證明弱磁檢測(cè)對(duì)埋地?zé)崃艿佬孤c(diǎn)定位具有可靠性,定位誤差在30cm以?xún)?nèi)。且研究了熱力管道三種典型狀態(tài)在計(jì)算機(jī)仿真下的磁-溫梯度變化特點(diǎn),并結(jié)合熱力管道三種典型狀態(tài)下的現(xiàn)場(chǎng)檢測(cè)數(shù)據(jù)進(jìn)行分析,論證了磁-溫梯度檢測(cè)技術(shù)在熱力管道檢測(cè)中的優(yōu)越性。在此基礎(chǔ)上,研制出一套熱力管道非開(kāi)挖檢測(cè)儀器。最后,去往北方多個(gè)城市進(jìn)行熱力管道實(shí)地檢測(cè),在進(jìn)行檢測(cè)數(shù)據(jù)綜合分析后,對(duì)泄漏點(diǎn)進(jìn)行定位并開(kāi)挖驗(yàn)證。開(kāi)挖結(jié)果表明,基于磁-溫梯度檢測(cè)技術(shù)研制的熱力管道檢測(cè)儀器對(duì)埋地?zé)崃艿篮吐短斓墓軠戏笤O(shè)式熱力管道的泄漏點(diǎn)進(jìn)行定位的可靠性較高,其對(duì)泄漏點(diǎn)定位與實(shí)際位置偏差在0.30m以?xún)?nèi),完全滿(mǎn)足現(xiàn)場(chǎng)實(shí)際需求。課題為城市熱力管道的泄漏檢測(cè)提供了一種新型的檢測(cè)方法,即結(jié)合弱磁檢測(cè)技術(shù)和紅外測(cè)溫檢測(cè)技術(shù)的磁-溫梯度檢測(cè)方法。該方法對(duì)復(fù)雜的路面環(huán)境具有良好的適應(yīng)性,能適用于大部分熱力管道的泄漏檢測(cè)。
[Abstract]:With the increase of heating pipe age in northern China, there have been many corrosion and leakage problems in urban heating pipeline in recent years, which cause difficulties to urban heating and bring large economic losses to heating enterprises. But at present, many cities in our country lack special detection equipment in the leakage location of heating pipes. In view of the above situation, first of all, the paper discusses the principle of magnet-temperature gradient detection and analyzes the failure reason of thermal pipeline. The magnetic-temperature gradient detection method is theoretically established to detect the leakage location of urban heating pipeline without excavation in service. Secondly, the magnetic field and temperature signal of thermal pipeline leakage are simulated by computer, and it is found that both magnetic field signal and temperature signal have changed. It is proved from the theoretical data that it is possible to locate the leakage point by detecting the change of magnetic field and temperature signal when the thermal pipeline leaks. Thirdly, in the case of 1.5 m lift, the weak magnetic field detection experiment is carried out for the pipeline with special groove defect, which proves that the weak magnetic detection is reliable for the location of leakage point of buried thermal pipeline, and the positioning error is within 30cm. The variation characteristics of magnet-temperature gradient of three typical states of thermal pipeline under computer simulation are studied, and the field detection data of three typical states of thermal pipeline are analyzed. The superiority of magnetic-temperature gradient detection technology in thermal pipeline detection is demonstrated. On this basis, a set of non-excavation testing instrument for thermal pipeline has been developed. Finally, the thermal pipeline field inspection is carried out in many cities in the north. After comprehensive analysis of the test data, the leakage point is located and verified by excavation. The excavation results show that the reliability of detecting the leakage points of buried thermal pipelines and open-air trench laying thermal pipelines is high, which is based on the magnetic temperature gradient detection technology. The deviation between the leak location and the actual location is less than 0.30m, which fully meets the actual demand of the site. The subject provides a new detection method for the leakage detection of urban thermal pipeline, that is, the magnet-temperature gradient detection method combined with the weak magnetic field detection technology and the infrared temperature detection technology. This method has good adaptability to complex pavement environment and can be applied to the leakage detection of most thermal pipelines.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TU995
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙龍燦;孟永樂(lè);于潤(rùn)橋;張維景;;非開(kāi)挖熱力管道磁-溫梯度差檢測(cè)技術(shù)研究[J];暖通空調(diào);2017年04期
2 李征;;直埋供熱管道運(yùn)行監(jiān)測(cè)與泄漏檢測(cè)技術(shù)探討[J];區(qū)域供熱;2016年05期
3 王海登;于潤(rùn)橋;張維景;趙龍燦;;弱磁檢測(cè)在小徑管焊縫檢測(cè)中的應(yīng)用研究[J];無(wú)損探傷;2016年01期
4 孫家麗;;城市供熱管網(wǎng)設(shè)計(jì)工作要點(diǎn)分析[J];科技尚品;2016年01期
5 曹煜;于潤(rùn)橋;夏桂鎖;陳晨;;熱力管道磁 溫綜合檢測(cè)技術(shù)[J];南昌航空大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年01期
6 李琦;趙杰;張永勝;;熱力管道泄漏檢測(cè)系統(tǒng)設(shè)計(jì)[J];制造業(yè)自動(dòng)化;2014年04期
7 劉凱;于潤(rùn)橋;胡博;鄢志強(qiáng);;城市并行熱力管道的非開(kāi)挖檢測(cè)技術(shù)研究[J];南昌航空大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年04期
8 于潤(rùn)橋;徐偉津;胡博;廖城;付鑫;何恩達(dá);;帶包覆層管道腐蝕缺陷的微磁檢測(cè)技術(shù)[J];失效分析與預(yù)防;2013年06期
9 王彥升;陳雷;葛p苤,
本文編號(hào):1917732
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1917732.html