輕鋼灌漿墻體抗震性能試驗(yàn)與設(shè)計(jì)方法研究
本文選題:輕鋼灌漿墻 + 裝配式建筑; 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:輕鋼灌漿墻結(jié)構(gòu)體系是一種新型裝配式建筑結(jié)構(gòu)體系,具有抗震優(yōu)良、節(jié)能環(huán)保、施工快速、經(jīng)濟(jì)實(shí)用、防火防腐、隔音、保溫隔熱一體化等特點(diǎn)。本文以試驗(yàn)為基礎(chǔ),利用ABAQUS建立輕鋼灌漿墻體有限元模型,對(duì)墻體抗震性能及抗剪承載力影響因素進(jìn)行了分析。結(jié)合試驗(yàn)結(jié)果和有限元模擬,對(duì)墻體設(shè)計(jì)方法進(jìn)行研究,為輕鋼灌漿墻體技術(shù)規(guī)程的編制及推廣應(yīng)用提供科學(xué)依據(jù)。本文主要完成的工作及成果如下:(1)進(jìn)行了 5片1:1輕鋼灌漿墻體的低周往復(fù)加載試驗(yàn),分析總結(jié)了墻體的破壞模式、滯回性能、抗剪承載能力、延性性能、耗能能力和剛度退化等規(guī)律。試驗(yàn)結(jié)果表明:灌漿墻體在層間位移角1/300左右時(shí)屈服,極限層間位移角達(dá)到1/50。灌漿墻體的抗剪承載力為空框架墻體的3.3倍,初始抗側(cè)剛度為空框架墻體的4倍,累積耗能為空框架墻體的2.4倍;有蒙皮灌漿墻體抗剪承載力比無蒙皮灌漿墻體提高43%,內(nèi)外墻面板能抑制聚苯顆粒泡沫混凝土開裂;高寬比為1.5的墻體單位寬度抗剪承載力比高寬比為1的墻體降低27%,高寬比越大,剛度退化越顯著。輕鋼灌漿墻體主要通過鋼材屈服后的彈塑性變形和材料的破壞來實(shí)現(xiàn)耗能,試驗(yàn)墻體的延性系數(shù)較大,具有良好的變形與耗能能力。(2)采用Abaqus軟件對(duì)單調(diào)荷載作用下的輕鋼灌漿墻體進(jìn)行模擬,將試驗(yàn)墻體破壞特征、荷載-位移曲線和最大抗剪承載力與有限元分析結(jié)果進(jìn)行對(duì)比分析,二者吻合較好。在試驗(yàn)結(jié)果基礎(chǔ)上,利用有限元方法對(duì)墻體抗剪承載力影響因素進(jìn)行了分析。結(jié)果表明:填充材料和鋼材厚度對(duì)墻體抗剪承載力影響最大;內(nèi)外墻板、斜支撐和高寬比對(duì)墻體抗剪承載力影響次之;橫龍骨、外掛板種類和豎向荷載對(duì)墻體抗剪承載力影響不大。(3)結(jié)合試驗(yàn)結(jié)果和有限元分析,對(duì)輕鋼灌漿墻體設(shè)計(jì)方法進(jìn)行了研究。提出了輕鋼灌漿墻體抗側(cè)剛度計(jì)算公式和抗剪承載力計(jì)算公式,計(jì)算結(jié)果與試驗(yàn)吻合較好。對(duì)墻體的構(gòu)造提出優(yōu)化建議,為輕鋼灌漿墻結(jié)構(gòu)的后續(xù)研究及工程應(yīng)用提供依據(jù)。
[Abstract]:Light steel grouting wall structure system is a new type of prefabricated building structure system, which has the characteristics of good seismic resistance, energy saving and environmental protection, fast construction, economic and practical, anti-fire and anticorrosion, sound insulation, heat insulation and so on. Based on the experiment, the finite element model of lightweight steel grouting wall is established by ABAQUS, and the factors affecting the seismic performance and shear bearing capacity of the wall are analyzed. Combined with the test results and finite element simulation, the design method of the wall is studied, which provides a scientific basis for the compilation and popularization of the technical specification for the grouting wall in light steel. The main work and results of this paper are as follows: (1) the low cycle reciprocating loading tests of 5 1:1 light steel grouting walls are carried out, and the failure modes, hysteretic properties, shear bearing capacity, ductility of the walls are analyzed and summarized. Energy dissipation capacity and stiffness degradation. The experimental results show that when the interstory displacement angle is about 1 / 300, the ultimate interstory displacement angle reaches 1 / 50. The shear capacity of grouting wall is 3.3 times of that of hollow frame wall, the initial lateral stiffness is 4 times of that of empty frame wall, and the cumulative energy consumption is 2.4 times of that of empty frame wall. The shearing capacity of the thinned grouting wall is 43% higher than that of the non-skinned grouting wall, and the inner and outer wall panel can restrain the cracking of polystyrene granular foam concrete. The shear bearing capacity per unit width of the wall with a aspect ratio of 1.5 is reduced by 27 times than that of the wall with a aspect ratio of 1. The larger the aspect ratio is, the more the stiffness degenerates. The light steel grouting wall can consume energy mainly through the elastoplastic deformation and material failure after the steel yield, and the ductility coefficient of the test wall is large. Abaqus software is used to simulate the lightweight steel grouting wall under monotonic load, and the failure characteristics of the test wall are analyzed. The results of the load-displacement curve and the maximum shear capacity are compared with those of the finite element analysis, and the results are in good agreement with each other. Based on the experimental results, the factors affecting the shear capacity of the wall are analyzed by finite element method. The results show that the thickness of filling material and steel has the greatest influence on the shear bearing capacity of the wall, the external wall plate, oblique brace and the ratio of height to width have the second influence on the shear bearing capacity of the wall. Combined with test results and finite element analysis, the design method of lightweight steel grouting wall was studied. The formulas of lateral stiffness and shear bearing capacity of lightweight steel grouting wall are presented. The calculated results are in good agreement with the test results. Suggestions for optimization of wall structure are put forward, which provide basis for follow-up study and engineering application of light steel grouting wall structure.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU352.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 郁琦桐;潘鵬;蘇宇坤;;輕鋼龍骨;⒅楸厣皾{墻體抗震性能試驗(yàn)研究[J];工程力學(xué);2015年03期
2 高宛成;肖巖;;冷彎薄壁型鋼組合墻體受剪性能研究綜述[J];建筑結(jié)構(gòu)學(xué)報(bào);2014年04期
3 李元齊;劉飛;沈祖炎;何慧文;;S350冷彎薄壁型鋼龍骨式復(fù)合墻體抗震性能試驗(yàn)研究[J];土木工程學(xué)報(bào);2012年12期
4 蘇明周;黃智光;孫健;齊巖;申林;;冷彎薄壁型鋼組合墻體循環(huán)荷載下抗剪性能試驗(yàn)研究[J];土木工程學(xué)報(bào);2011年08期
5 周緒紅;石宇;周天華;于正寧;;冷彎薄壁型鋼組合墻體抗剪性能試驗(yàn)研究[J];土木工程學(xué)報(bào);2010年05期
6 陳實(shí);;“新農(nóng)村”節(jié)能省地型住宅建設(shè)的思考與對(duì)策[J];建筑經(jīng)濟(jì);2007年S1期
7 周天華;石宇;何?;楊家驥;楊朋飛;;冷彎型鋼組合墻體抗剪承載力試驗(yàn)研究[J];西安建筑科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年01期
相關(guān)博士學(xué)位論文 前1條
1 石宇;水平地震作用下多層冷彎薄壁型鋼結(jié)構(gòu)住宅的抗震性能研究[D];長安大學(xué);2008年
相關(guān)碩士學(xué)位論文 前9條
1 余賓寧;筑巢輕鋼龍骨體系桁架梁試驗(yàn)研究及分析[D];重慶大學(xué);2010年
2 凌利改;高強(qiáng)冷彎薄壁型鋼立柱單面覆板組合墻體抗剪性能試驗(yàn)研究[D];西安建筑科技大學(xué);2008年
3 陳衛(wèi)海;高強(qiáng)冷彎薄壁型鋼骨架帶交叉支撐墻體抗剪性能研究[D];西安建筑科技大學(xué);2008年
4 袁耀明;高強(qiáng)冷彎薄壁型鋼雙面覆板墻體抗剪試驗(yàn)及有限元分析[D];西安建筑科技大學(xué);2008年
5 聶少鋒;冷彎型鋼立柱組合墻體抗剪承載力簡化計(jì)算方法研究[D];長安大學(xué);2006年
6 胡海兵;輕鋼龍骨墻體在水平荷載作用下的試驗(yàn)研究[D];武漢理工大學(xué);2005年
7 江風(fēng)波;輕鋼龍骨復(fù)合墻體抗側(cè)性能研究[D];武漢理工大學(xué);2005年
8 葉紅;新型輕鋼龍骨體系振動(dòng)試驗(yàn)研究及動(dòng)力分析[D];武漢理工大學(xué);2005年
9 張雪姣;輕鋼龍骨體系住宅抗震性能研究[D];南京工業(yè)大學(xué);2005年
,本文編號(hào):1909224
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1909224.html