天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 建筑工程論文 >

異養(yǎng)和電化學(xué)氫自養(yǎng)協(xié)同降解水中高氯酸鹽的研究

發(fā)布時間:2018-05-14 16:51

  本文選題:異養(yǎng) + 氫自養(yǎng); 參考:《河南工業(yè)大學(xué)》2017年碩士論文


【摘要】:水中高氯酸鹽的去除已經(jīng)成為當(dāng)前水處理領(lǐng)域的研究熱點。由于高氯酸鹽特殊的理化性質(zhì)導(dǎo)致常規(guī)處理方法難以將其有效去除。生物法具有去除效率高、成本低、轉(zhuǎn)化徹底等優(yōu)點而被廣泛應(yīng)用。異養(yǎng)微生物還原高氯酸鹽反應(yīng)速率快,微生物易于培養(yǎng)馴化,但有機碳源容易殘余水中造成二次污染。氫自養(yǎng)微生物還原過程清潔,但氫氣的產(chǎn)生與存儲存在一定困難。本研究將異養(yǎng)還原過程與氫自養(yǎng)還原過程相結(jié)合,并引入電化學(xué)手段建立微生物異養(yǎng)和電化學(xué)氫自養(yǎng)協(xié)同作用的凈化系統(tǒng),該系統(tǒng)集異養(yǎng)過程的高效性與氫自養(yǎng)過程的清潔性于一體,在實現(xiàn)高氯酸鹽高效降解的同時避免有機碳源殘余造成二次污染,主要研究內(nèi)容包括:1、異養(yǎng)還原水中高氯酸鹽的菌群馴化、結(jié)構(gòu)演替及其降解高氯酸鹽效能分析。接種污水廠活性污泥,以乙酸鈉為電子供體,通過序批式實驗研究了微生物異養(yǎng)還原高氯酸鹽的效果及相關(guān)影響因素,并通過高通量測序技術(shù)對馴化過程中微生物群落結(jié)構(gòu)進行了分析。結(jié)果表明:隨著馴化過程的進行,菌群α多樣性逐漸降低,門水平上優(yōu)勢菌群包括Proteobacteria(變形菌門)、Bacteroidetes(擬桿菌門)、Chlorofexi(綠彎菌門)等。高氯酸鹽降解動力學(xué)研究結(jié)果顯示,米-門方程可以較好地描述微生物還原高氯酸鹽過程,動力學(xué)參數(shù)qmax為4.03~6.27mgClO4-/gVSS,Ks為7.69~14.29 mg/L,[CH3COO-]/[ClO4-]=1.77(質(zhì)量比)為最佳投加量,最適pH值為7.0。當(dāng)溶液中硝酸根與高氯酸鹽共存時,微生物會優(yōu)先降解硝酸鹽。2、氫自養(yǎng)還原水中高氯酸鹽的效能及菌群結(jié)構(gòu)分析。研究結(jié)果表明:接種的活性污泥經(jīng)過馴化能夠在短時間內(nèi)實現(xiàn)對高氯酸鹽的穩(wěn)定降解。米-門方程可以較好地描述微生物還原高氯酸鹽過程,動力學(xué)參數(shù)qmax和Ks分別為2.52~3.25mg ClO4-/gVSS h和5.44~8.23 mg/L,最適pH值為9.0。此外,馴化的氫自養(yǎng)高氯酸鹽還原混合菌體系對溶液中共存的NO3-和SO42-仍有降解作用,對電子供體選擇的先后順序為:NO3-ClO4-SO42-。高通量測序結(jié)果表明,接種污泥經(jīng)過9個周期的馴化,菌群結(jié)構(gòu)逐漸穩(wěn)定,Thauera菌屬為氫自養(yǎng)高氯酸鹽優(yōu)勢菌屬。3、建立基于膜電解電化學(xué)氫自養(yǎng)MBBR生物反應(yīng)器(移動床生物膜反應(yīng)器:Moving Bed Biofilm Reactor),用于水中高氯酸鹽的深度去除。反應(yīng)體系中陰極室發(fā)生析氫反應(yīng),微生物利用氫氣將高氯酸鹽還原為氯離子,陽極室發(fā)生電化學(xué)氧化反應(yīng),氯離子轉(zhuǎn)化為氯氣溶于水生成活性氯,實現(xiàn)了高氯酸鹽的深度轉(zhuǎn)化?疾焓┘与娏鲗Ω呗人猁}降解效能的影響。結(jié)果表明:HRT(水力停留時間)為4 h,通過調(diào)節(jié)施加電流大小(6 mA~20 mA),反應(yīng)器內(nèi)能夠建立氫自養(yǎng)還原高氯酸鹽所需的厭氧環(huán)境。進水ClO4-濃度為4.98 mg/L,當(dāng)施加電流由6 mA增加至15 mA時,出水ClO4-去除率由39.75%增加至98.75%以上。高通量測序結(jié)果表明生物反應(yīng)區(qū)優(yōu)勢菌群結(jié)構(gòu)與直接氫自養(yǎng)研究結(jié)果類似,Thauera菌屬是優(yōu)勢菌屬。4、建立異養(yǎng)-膜電解氫自養(yǎng)協(xié)同作用深度降解高氯酸鹽的反應(yīng)體系。通過改變異養(yǎng)段乙酸根濃度和電化學(xué)氫自養(yǎng)段電流大小實現(xiàn)了異養(yǎng)段和電化學(xué)段對高氯酸鹽處理負荷的調(diào)配。結(jié)果表明:當(dāng)進水ClO4-濃度為10 mg/L,HRT=3.0 h,乙酸根投加量為5.9 mg/L,施加電流為130 mA時,異養(yǎng)段對高氯酸鹽的去除率為12.13%,電化學(xué)段高氯酸鹽去除率為86.86%,高氯酸鹽總?cè)コ蕿?9.06%,出水無有機物殘留。隨著施加電流的增加,電化學(xué)段對高氯酸鹽的去除率呈增加態(tài)勢。當(dāng)電化學(xué)段施加電流過高導(dǎo)致陰極室內(nèi)pH值超過微生物的耐受值時(pH9.70),電化學(xué)段對高氯酸鹽的去除率降低。
[Abstract]:The removal of perchlorate in water has become a hot spot in the field of water treatment. Due to the special physical and chemical properties of perchlorate, it is difficult to remove the perchlorate, which has the advantages of high removal efficiency, low cost and thorough conversion. The reaction rate of the heterotrophic microorganism reduction perchlorate is fast and micro. The organism is easy to train and domesticate, but the organic carbon source is easy to cause two pollution in the residual water. The reduction process of hydrogen autotrophic microorganisms is clean, but the production and storage of hydrogen is difficult. This study combines the process of heterotrophic reduction with the process of hydrogen autotrophic reduction, and introduces the electrochemical methods to establish the synergistic action of microbial heterotrophic and electrochemical hydrogen autotrophic. The system uses the purification system, which integrates the efficiency of heterotrophic process with the cleanliness of the autotrophic process of hydrogen, and avoids the two pollution of the residual organic carbon source while achieving high chlorate degradation. The main contents include: 1, the acclimatization of the perchlorate in the heterotrophic reduction water, the structural succession and the degradation of the perchlorate efficiency. The effect of microbial heterotrophic reduction of perchlorate and related factors were studied by sequencing batch experiment. The microbial community structure in the process of domestication was analyzed by high throughput sequencing technology. The results showed that as the domestication process was carried out, the diversity of the bacteria was varied. Gradually, the dominant bacteria in the gate level include Proteobacteria (Proteus door), Bacteroidetes (Pseudomonas), and Chlorofexi (chlorochlorate gate). The results of chlorate degradation kinetics show that the mica gate equation can describe the process of microbiological reduction of perchlorate, the kinetic parameter Qmax is 4.03~6.27mgClO4-/gVSS, and Ks is 7.69~14. 29 mg/L, [CH3COO-]/[ClO4-]=1.77 (mass ratio) is the best dosage, and the optimum pH value is 7.0. when the nitrate root and perchlorate in the solution coexist, the microorganisms will degrade the nitrate.2, the efficiency of the autotrophic reduction of perchlorate in the water and the structure analysis of the bacteria. The results show that the inoculated activated sludge can be domesticated in a short time. The stable degradation of perchlorate can be achieved. The mica gate equation can describe the process of microorganism reduction of perchlorate. The kinetic parameters Qmax and Ks are 2.52~3.25mg ClO4-/gVSS h and 5.44~8.23 mg/L, and the optimum pH value is 9.0.. The domesticated hydrogen autotrophic perchlorate reduction mixed bacteria system is still reduced to NO3- and SO42- in the solution. The sequence of selective electron donor selection was: NO3-ClO4-SO42-. high throughput sequencing results showed that the structure of the inoculated sludge was gradually stabilized after 9 cycles of acclimatization, and the genus Thauera was a hydrogen autotrophic perchlorate dominant genus.3, and a membrane electrolysis electrochemical hydrogen autotrophic MBBR bioreactor (mobile bed biofilm reactor: Movi) was established. Ng Bed Biofilm Reactor) is used for the depth removal of perchlorate in water. Hydrogen evolution reaction in the cathode chamber of the reaction system is used in the reaction system. Microbes use hydrogen to reduce perchlorate into chloride ion, electrochemical oxidation of the anode chamber, chlorine ion converted to chlorine dissolved in water to produce active chlorine, and the depth conversion of perchlorate is realized. The effect of current on the performance of perchlorate degradation shows that HRT (hydraulic retention time) is 4 h. By adjusting the applied current size (6 mA~20 mA), the anaerobic environment needed for hydrogen autotrophic reduction of perchlorate can be established in the reactor. The influent ClO4- concentration is 4.98 mg/L, and the effluent ClO4- removal rate is 39.7 when the adding current is increased from 6 mA to 15 mA. 5% increased to more than 98.75%. High throughput sequencing results showed that the structure of dominant bacteria in the bioreactive region was similar to that of direct hydrogen autotrophic study. Thauera was a dominant genus.4, and a reaction system was established to degrade perchlorate with heterotrophic membrane electrolysis hydrogen autotrophic synergism. By changing the concentration of acetic acid in the heterotrophic segment and electrochemistry hydrogen autotrophic segment The flow size realized the allocation of perchlorate treatment load in heterotrophic and electrochemical segments. The results showed that when the influent ClO4- concentration was 10 mg/L, HRT=3.0 h, the dosage of acetic acid root was 5.9 mg/L and the applied current was 130 mA, the removal rate of perchlorate in heterotrophic section was 12.13%, the removal rate of perchlorate in electrochemical section was 86.86%, and the total perchlorate removal was removed. With the rate of 99.06%, there is no organic residue in the effluent. With the increase of current, the removal rate of perchlorate in the electrochemical section increases. When the current is too high in the electrochemical section, the pH value in the cathode chamber exceeds the tolerance value of the microorganism (pH9.70), and the removal rate of perchlorate is reduced by the electrochemical section.

【學(xué)位授予單位】:河南工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU991.2

【參考文獻】

相關(guān)期刊論文 前7條

1 張健;高孟春;張優(yōu);任云;趙從從;;膜電解氫自養(yǎng)膜生物反應(yīng)器還原水中的ClO_4~-[J];環(huán)境工程學(xué)報;2015年11期

2 謝杰;楊志泉;陳兵;江毅;;硫自養(yǎng)菌降解還原高氯酸鹽的優(yōu)化控制研究[J];水處理技術(shù);2012年06期

3 楊一瓊;高乃云;郭洪光;馬艷;;焙燒態(tài)MgAl-CO_3雙羥基層狀金屬化合物去除水中痕量高氯酸鹽[J];四川大學(xué)學(xué)報(工程科學(xué)版);2012年01期

4 蔡賢雷;謝寅峰;劉偉龍;鄧偉;;高氯酸鹽污染及修復(fù)的研究進展[J];生態(tài)學(xué)報;2008年11期

5 蔡亞岐;史亞利;張萍;牟世芬;江桂斌;;高氯酸鹽的環(huán)境污染問題[J];化學(xué)進展;2006年11期

6 劉勇建,牟世芬,林愛武,崔建華,杜兵;北京市飲用水中溴酸鹽、鹵代乙酸及高氯酸鹽研究[J];環(huán)境科學(xué);2004年02期

7 劉勇建,牟世芬;離子色譜在飲用水消毒副產(chǎn)物及高氯酸鹽分析中的應(yīng)用[J];環(huán)境污染治理技術(shù)與設(shè)備;2004年03期

相關(guān)碩士學(xué)位論文 前3條

1 江毅;生物法降解水體中高氯酸鹽的研究[D];華南理工大學(xué);2013年

2 徐詠詠;改性納米零價鐵去除水中溴酸鹽的研究[D];浙江大學(xué);2013年

3 何平;水中高氯酸鹽去除的新工藝研究[D];浙江大學(xué);2006年

,

本文編號:1888706

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1888706.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f70ca***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com