復(fù)合調(diào)熱調(diào)濕材料的理論、制備及性能研究
本文選題:多孔材料 + 相對(duì)濕度。 參考:《南京大學(xué)》2017年博士論文
【摘要】:隨著社會(huì)的發(fā)展,人類(lèi)社會(huì)對(duì)能源的需求越來(lái)越大。能源的消耗,帶來(lái)了一系列的環(huán)境問(wèn)題。建筑在全生命周期過(guò)程中,其消耗的能源約占人類(lèi)能源消耗的50%,而其中暖通空調(diào)系統(tǒng)消耗的能源可以占建筑物消耗能源總量的50%以上。暖通空調(diào)系統(tǒng)負(fù)荷包括潛熱負(fù)荷和顯熱負(fù)荷,潛熱負(fù)荷主要源于對(duì)室內(nèi)環(huán)境相對(duì)濕度的控制,而同時(shí)相對(duì)濕度對(duì)人體舒適性、健康和工作效率也有很重要的影響。本論文則是在這一背景下,試圖通過(guò)被動(dòng)節(jié)能技術(shù)調(diào)控室內(nèi)的溫濕度,從而達(dá)到節(jié)能的目的。本論文主要包括三個(gè)部分,首先是對(duì)多孔材料的吸放濕現(xiàn)象進(jìn)行理論分析,其次是制備能同時(shí)調(diào)熱調(diào)濕的材料,并測(cè)試其性能,最后通過(guò)模擬軟件對(duì)材料的節(jié)能效果進(jìn)行模擬。本文首先分析了化學(xué)吸附與物理吸附的吸附過(guò)程,然后從毛細(xì)凝聚理論出發(fā),分析了物理吸附過(guò)程中濕滯現(xiàn)象的成因,并對(duì)濕滯現(xiàn)象與孔結(jié)構(gòu)的關(guān)系進(jìn)行了分析,分別給出了單曲面孔結(jié)構(gòu)和多曲面孔結(jié)構(gòu)中濕滯現(xiàn)象的定性解釋,并對(duì)均勻圓柱形孔內(nèi)濕滯線的吸濕線與放濕線斜率進(jìn)行了計(jì)算。在對(duì)濕滯現(xiàn)象分析的基礎(chǔ)上,本章提出了定點(diǎn)調(diào)濕材料這一概念,并對(duì)理想定點(diǎn)調(diào)濕材料的特性進(jìn)行了分析,利用AAO模板,對(duì)上述相關(guān)理論進(jìn)行了驗(yàn)證。同時(shí)結(jié)合BET多分子層吸附理論,從理論出發(fā),給出了濕滯環(huán)內(nèi)循環(huán)的吸放濕路徑描述公式。文章分析了材料的傳濕系數(shù)和濕容在非常數(shù)情況下的濕緩沖情況,在考慮表面換濕系數(shù)的情況下,推導(dǎo)出包含換濕系數(shù)時(shí)的濕緩沖值,并給出具體的計(jì)算形式。接著,考慮外界相對(duì)濕度波動(dòng)是近似簡(jiǎn)諧波動(dòng),并在此條件下,給出了材料在平衡之后的吸放濕量,并給出了相關(guān)的修正系數(shù)方程。測(cè)試了 VCPCM(火山石粉與微膠囊復(fù)合材料)在不同相對(duì)濕度狀況下的濕緩沖值,并利用軟件模擬計(jì)算的方法,分析比較了石膏板、混凝土、加氣混凝土以及云杉板四種材料在波動(dòng)環(huán)境下吸放濕量的精確值以及通過(guò)濕緩沖值計(jì)算得到的值,其結(jié)果表明推導(dǎo)得到的修正系數(shù)可以很好地修正利用濕緩沖值計(jì)算得到的吸放濕量。接著通過(guò)正硅酸乙酯制備出二氧化硅,并利用共混法封裝相變材料,然后將相變材料與硅藻土混合,制備出復(fù)合調(diào)熱調(diào)濕材料。利用正硅酸乙酯,通過(guò)溶膠凝膠法,制備出微膠囊封裝相變材料,并與硅藻土復(fù)合制備出復(fù)合調(diào)熱調(diào)濕材料。利用一甲基三乙氧基硅烷,通過(guò)溶膠凝膠法,制備出微膠囊封裝相變材料,并與火山石粉、沸石粉以及海泡石粉等幾種礦物分別制備出不同的復(fù)合調(diào)熱調(diào)濕材料。通過(guò)測(cè)試,其結(jié)果表明相變材料的熱學(xué)性能得到提高,過(guò)冷度降低,復(fù)合材料的著火點(diǎn)提高。同時(shí)每種復(fù)合材料的吸濕性能都得到提高,傳濕系數(shù)更大,濕緩沖值也比相應(yīng)的礦物更大,且通過(guò)與石膏板的對(duì)比,復(fù)合材料的傳濕性能遠(yuǎn)大于石膏板。其中VCPCM的濕緩沖值達(dá)到了"優(yōu)秀"級(jí)別。最后利用EnergyPlus軟件計(jì)算了南京與蘭州兩個(gè)在不同氣候條件下城市中建筑的室內(nèi)溫度、相對(duì)濕度以及能耗情況。計(jì)算結(jié)果表明,在利用了調(diào)熱調(diào)濕材料之后,室內(nèi)環(huán)境的溫度、相對(duì)濕度的波動(dòng)幅度明顯小于參照組,同時(shí)計(jì)算可得在五個(gè)月內(nèi)的南京建筑的平均節(jié)能約為11.6%,蘭州建筑的平均節(jié)能約為28.8%。
[Abstract]:With the development of society, the demand for energy is increasing. The consumption of energy brings a series of environmental problems. In the whole life cycle, the energy consumption of the building accounts for about 50% of the human energy consumption, and the energy consumed by HVAC system can account for more than 50% of the total energy consumption of the building. The load of the system includes the latent heat load and the sensible heat load. The latent heat load is mainly derived from the control of the relative humidity in the indoor environment, while the relative humidity has an important influence on the human comfort, health and efficiency. In this paper, this paper tries to control the temperature and humidity in the room by the dynamic energy saving technology. This paper mainly includes three parts, the first is the theoretical analysis of the absorption and release of the porous material, the second is to prepare the material which can simultaneously heat and adjust the humidity, and test its performance. Finally, the simulation software is used to simulate the energy saving effect of the material. The adsorption and adsorption of chemical adsorption and physical adsorption are first analyzed. Proceeding from the capillary condensation theory, the cause of the wet hysteresis in the physical adsorption process is analyzed, and the relationship between the wet hysteresis and the pore structure is analyzed. The qualitative explanation of the wet hysteresis in the single curved face structure and the multi curved face structure is given respectively, and the slope of the wet line and the wetting line in the uniform circular cylindrical hole is also introduced. On the basis of the analysis of wet hysteresis, this chapter puts forward the concept of fixed-point wetting material, and analyses the characteristics of the ideal fixed-point humidifying material. Using the AAO template, the related theories are verified. At the same time, combining the theory of BET multi molecular layer adsorption, the absorption and desorption of the internal circulation of wet hysteresis loop is given. In this paper, the moisture transfer coefficient and wet capacity of the material are analyzed in a very few conditions. Under the condition of the coefficient of surface wetting, the moisture retarding value containing the moisture transfer coefficient is derived, and the specific form of calculation is given. Then, the fluctuation of the relative humidity is considered to be an approximate harmonic wave, and under this condition, The moisture absorption of the material after the balance is given, and the related correction coefficient equation is given. The wet impulse of the VCPCM (volcanic powder and microcapsule composite) under the condition of different relative humidity is tested and the four materials of gypsum board, concrete, aerated concrete and spruce board are analyzed and compared by the method of software simulation and calculation. The exact value of the moisture content and the value calculated through the wet impulse are calculated under the fluctuating environment. The results show that the derived correction coefficient can well amend the moisture absorption and desorption amount obtained by the wet impulse. Then the silica is prepared by the ethyl orthosilicate, and the phase change material is encapsulated with the blending method, and then the phase change material is made. Mixed with diatomite, the composite heat and humidity control material was prepared. Using the ethyl orthosilicate, the microcapsule encapsulated phase change material was prepared by sol-gel method, and the compound heat regulating and humidifying material was prepared with the diatomite. The microcapsule package phase change material was prepared by using the methyl triethoxysilane and the sol-gel method. The results show that the thermal properties of the phase change materials are improved, the supercooling degree is reduced and the ignition point of the composite is improved. At the same time, the hygroscopic property of each composite is improved, the moisture transfer coefficient is greater, and the humidity is slow. Compared with the corresponding mineral, the wetting performance of the composite is much greater than that of plasterboard by comparing with the plasterboard. The wet slow impulse of VCPCM reaches the "excellent" level. Finally, the indoor temperature, relative humidity and energy consumption of two buildings in Nanjing and Lanzhou under different climate conditions are calculated using EnergyPlus software. The calculation results show that the fluctuation of temperature and relative humidity in indoor environment is obviously less than that of reference group, and the average energy saving of Nanjing building in five months is about 11.6%, and the average energy saving of Lanzhou building is about 28.8%..
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TU50
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 劉剛;彭琛;劉俊躍;;國(guó)外建筑節(jié)能標(biāo)準(zhǔn)發(fā)展歷程及趨勢(shì)研究[J];建設(shè)科技;2015年14期
2 戴旭;;被動(dòng)式節(jié)能建筑中的主動(dòng)節(jié)能技術(shù)應(yīng)用[J];中國(guó)住宅設(shè)施;2014年05期
3 鄭佳宜;陳振乾;;硅藻土基調(diào)濕建筑材料的應(yīng)用仿真模擬[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年04期
4 陳勇;郭金濤;王重慶;劉曉勤;馬正飛;;金屬有機(jī)骨架材料MIL-101的合成及CO吸附性能[J];南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年05期
5 楊茜;章易;;我國(guó)發(fā)展綠色建筑任重道遠(yuǎn)[J];中國(guó)住宅設(shè)施;2006年02期
6 羅曦蕓,金鑫榮;文物保護(hù)用復(fù)合型調(diào)濕劑的機(jī)理研究[J];化工新型材料;2000年12期
7 羅曦蕓;調(diào)濕材料的開(kāi)發(fā)[J];化工新型材料;1997年03期
8 馮乃謙,李桂芝,邢鋒;調(diào)濕材料的研究[J];新型建筑材料;1994年06期
9 顧惕人;試論de Boer-Zwikker公式在溶液吸附中的應(yīng)用[J];科學(xué)通報(bào);1978年05期
相關(guān)碩士學(xué)位論文 前3條
1 楊駿;多孔調(diào)濕材料對(duì)室內(nèi)熱濕環(huán)境的影響[D];南京大學(xué);2015年
2 龔旎;醫(yī)院建筑熱濕環(huán)境舒適與健康影響研究[D];重慶大學(xué);2011年
3 胡芳芳;中英美綠色(可持續(xù))建筑評(píng)價(jià)標(biāo)準(zhǔn)的比較[D];北京交通大學(xué);2010年
,本文編號(hào):1885985
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1885985.html