發(fā)泡礦渣基礦物聚合物的制備及性能研究
本文選題:堿激發(fā)礦渣 + 發(fā)泡劑 ; 參考:《西安建筑科技大學》2017年碩士論文
【摘要】:保溫材料是建筑節(jié)能的物質(zhì)基礎(chǔ)。與有機類保溫材料相比,無機保溫材料具有防火、耐久、無毒、無害等優(yōu)勢,應用前景更為廣闊。通用硅酸鹽水泥泡沫混凝土作為常用的無機保溫材料,存在凝結(jié)硬化慢、絕對強度低、輕質(zhì)-高強矛盾突出等技術(shù)缺陷,其應用受到了很大限制。礦渣基礦物聚合物作為一種新型膠凝材料,具有快硬、早強、高強、利廢、環(huán)保等特點。鑒于此,本課題提出利用礦渣基礦物聚合物作為膠凝材料制備泡沫混凝土的技術(shù)思路,并以期獲得輕質(zhì)-高強的無機保溫材料。首先,課題選用十二烷基硫酸鈉(K12)、α-烯基磺酸鈉(AOS)以及脂肪醇聚氧乙烯醚硫酸鈉(AES)三種起泡組分,測試了單一起泡組分在不同濃度下的起泡性能;在此基礎(chǔ)上,以硅樹脂聚醚乳液(MPS)為穩(wěn)泡組分,K12、AOS、AES為起泡組分,分別復合制備發(fā)泡劑(K12型、AOS型和AES型),并對比分析了三種復合發(fā)泡劑在空氣及新拌泡沫混凝土漿料中的穩(wěn)定性。研究結(jié)果表明:K12、AOS和AES三種起泡組分質(zhì)量分數(shù)分別為0.6wt%、0.4wt%和0.8wt%時,三種發(fā)泡液具有最佳的起泡性能;摻入MPS濃度為0.08wt%時,K12型、AOS型和AES型三種復合發(fā)泡劑的綜合性能最佳,其發(fā)泡倍數(shù)分別為53、37和53,1h沉降距分別為5mm、9mm和5mm,1h泌水率分別為47%、49%和46%;三種復合發(fā)泡劑所制備泡沫在礦渣基礦物聚合物新拌漿料中的穩(wěn)定性依次為AES型K12型AOS型。其次,試驗研究了液膠比(水玻璃溶液與;郀t礦渣質(zhì)量之比)和泡沫摻量對泡沫混凝土性能的影響。研究結(jié)果表明:當泡沫摻量為4.00%時,隨著液膠比的增大,發(fā)泡礦渣基礦物聚合物的干密度與抗壓強度均降低,泡沫摻量為8.00%時,制品干密度幾乎不受液膠比影響,抗壓強度隨液膠比的增加而減小;當泡沫摻量(泡沫與漿體質(zhì)量比)為4.45~10.70%時,隨泡沫摻量增加,發(fā)泡礦渣聚合物的孔隙率增加、平均孔徑及孔圓度值增大、小孔比例減小而中孔和大孔比例增加,相應的發(fā)泡礦渣聚合物干密度、抗折強度、抗壓強度和導熱系數(shù)均呈負指數(shù)關(guān)系降低且相關(guān)性強。當泡沫摻量為4.45~12.00%時,所制備的發(fā)泡礦渣基礦物聚合物的干密度為398~1325kg/m3,抗壓強度1.12~17.81MPa、導熱系數(shù)0.0813~0.2211W/(m?K),且在相同密度等級下,所制備泡沫混凝土的強度和導熱系數(shù)明顯優(yōu)于JG/T 266-2011《泡沫混凝土》中規(guī)定的技術(shù)要求。最后,試驗探討了輕骨料和纖維對發(fā)泡礦渣基礦物聚合物干密度、強度及收縮性能的影響。研究結(jié)果表明:隨著膨脹蛭石摻量增加,發(fā)泡礦渣基礦物聚合物干密度先增大后減小、抗壓強度顯著降低及收縮值降低;隨著膨脹珍珠巖摻量增加,制品干密度及抗壓強度顯著降低,收縮值降低;隨著PVA纖維摻量增加,制品干密度及強度先增大后減小,收縮值降低;隨著CF纖維摻量增加,制品干密度、抗壓強度以及收縮值顯著降低;PVA纖維與CF纖維相比,PVA纖維對發(fā)泡礦渣基礦物聚合物的增強效果優(yōu)于CF,而CF對制品的增韌效果優(yōu)于PVA纖維。
[Abstract]:Thermal insulation material is the material foundation of building energy saving. Compared with organic thermal insulation material, inorganic thermal insulation material has the advantages of fireproof, durability, innocuity and innocuity. The application prospect is wider. General silicate cement foam concrete as a common inorganic thermal insulation material, there is a slow setting hardening, low absolute strength, light quality and high strength contradiction and so on. As a new type of cementitious material, the slag based mineral polymer has the characteristics of fast hard, early strength, high strength, high strength, waste, environmental protection and so on. In view of this, this topic puts forward a technical idea to prepare foam concrete by using slag based mineral polymer as cementitious material, and in order to obtain light and high-strength inorganic heat preservation. First, we selected three kinds of foam components, twelve sodium alkyl sulfate (K12), sodium alkenate sulfonate (AOS) and fatty alcohol polyoxyethylene ether sodium sulfate (AES), and tested the foaming properties of the single bubble composition at different concentrations. On this basis, the silicone resin polyether emulsion (MPS) was a stable bubble component, K12, AOS, and AES were the foaming components, respectively. The foaming agents (type K12, AOS and AES) were prepared and the stability of the three compound foaming agents in the air and new mixed foam concrete was compared and analyzed. The results showed that the best foaming properties of the three foaming components of K12, AOS and AES were 0.6wt%, 0.4wt% and 0.8wt%, and the concentration of MPS was 0.08, and the concentration of MPS was 0.08. Wt%, K12, AOS and AES type three compound foaming agents have the best comprehensive properties. The foaming times of 53,37 and 53,1h sedimentation distances are respectively 5mm, 9mm and 5mm, and 1H secreting rates are 47%, 49% and 46%, respectively. The stability of the three compound foaming agents in the slag based mineral polymer slurry is followed by AES K12 type. The effect of liquid gel ratio (water glass solution and granulated blast furnace slag mass ratio) and foam content on the performance of foam concrete was studied. The results showed that when the foam content was 4%, the dry density and the anti pressure degree of the foam slag based mineral polymer decreased with the increase of the liquid binder ratio, and the dry density of the foam was 8%. When the ratio of foam and slurry is 4.45~10.70%, the porosity of the foaming slag polymer increases, the average pore size and the pore circle value increase with the increase of foam content. The ratio of small pore ratio and the proportion of mesoporous and large pores is increased, and the corresponding foaming slag is found. The dry density, flexural strength, compressive strength and thermal conductivity of the polymer have a negative exponential relationship. When the amount of foam is 4.45~12.00%, the dry density of the foaming slag based mineral polymer is 398~1325kg/m3, the compressive strength 1.12~17.81MPa, the thermal conductivity 0.0813~0.2211W/ (M? K), and at the same density grade. The strength and thermal conductivity of foamed concrete are obviously superior to the technical requirements stipulated in JG/T 266-2011< foam concrete. Finally, the effects of light aggregate and fiber on the dry density, strength and shrinkage properties of foam slag based mineral polymers are investigated. The results show that the mineral accumulation of foamed mineral residue is increased with the increase of the amount of expanded vermiculite. The dry density and compressive strength of the products decreased significantly and the shrinkage value decreased with the increase of the content of the expanded perlite. As the amount of PVA fiber increased, the dry density and strength of the products increased first and then decreased, and the shrinkage value decreased with the increase of the amount of CF fiber, the dry density of products. The compressive strength and the shrinkage value of the PVA fiber are significantly lower than that of the CF fibers, and the enhanced effect of PVA fiber on the foamed mineral based mineral polymers is better than that of the CF, while the toughening effect of CF on the products is better than that of the PVA fiber.
【學位授予單位】:西安建筑科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU528
【參考文獻】
相關(guān)期刊論文 前10條
1 宋學鋒;楊萍;;泡沫摻量對發(fā)泡堿激發(fā)礦渣聚合物性能和孔隙特征的影響[J];硅酸鹽通報;2017年03期
2 汪海風;劉杰;盧建磊;林州;盛建松;楊輝;;玻璃粉-礦渣地聚合物基泡沫混凝土研究[J];新型建筑材料;2016年12期
3 甘戈金;蘭聰;陳景;盧佳林;王晶晶;;超輕質(zhì)堿激發(fā)泡沫混凝土的性能影響研究[J];新型建筑材料;2016年11期
4 江星;姚曉樂;王磊;楊凱;楊長輝;;堿礦渣加氣混凝土制備與性能研究[J];硅酸鹽通報;2016年10期
5 劉寧;;泡沫混凝土存在缺陷及改善措施研究[J];山西建筑;2016年22期
6 許彥明;蒙海寧;左李萍;朱祥;陸小軍;;泡沫混凝土發(fā)泡劑研究綜述[J];粉煤灰;2016年03期
7 李進衛(wèi);;泡沫混凝土在地暖中的應用[J];混凝土世界;2016年06期
8 馮恩娟;傅秀新;劉梁友;張輝;趙洪義;;醇胺類物質(zhì)對礦渣粉磨細度及活性影響的試驗研究[J];水泥;2016年05期
9 鄭睢寧;張建雷;李立頂;劉鵬飛;;聚乙烯醇纖維水泥基復合材料研究進展[J];青海交通科技;2016年02期
10 平熹;;基于工程造價的環(huán)境友好綠色催化劑設(shè)計[J];當代化工;2016年03期
相關(guān)碩士學位論文 前10條
1 陳海彬;化學發(fā)泡泡沫混凝土孔結(jié)構(gòu)的調(diào)控研究[D];華北理工大學;2015年
2 楊鳳雷;蛭石在熱阻路面中的應用研究[D];長安大學;2015年
3 任志強;堿激發(fā)粉煤灰泡沫混凝土的制備工藝研究[D];中北大學;2014年
4 李浩然;高穩(wěn)定發(fā)泡劑與泡沫混凝土的優(yōu)化設(shè)計及性能研究[D];南京航空航天大學;2014年
5 劉俊杰;夏熱冬冷地區(qū)既有商業(yè)建筑節(jié)能改造研究[D];湖南大學;2013年
6 王晶;高延性水泥基復合材料力學性能試驗研究[D];西安建筑科技大學;2013年
7 蔡靚;基于氣候條件的居住建筑室內(nèi)長期熱環(huán)境評價方法研究[D];湖南大學;2012年
8 陳偉章;富泡沫復合表面活性劑的研究與應用[D];安徽理工大學;2007年
9 趙永林;水玻璃激發(fā)礦渣超細粉膠凝材料的形成及水化機理的研究[D];西安建筑科技大學;2007年
10 林興勝;纖維增強泡沫混凝土的研制與性能[D];合肥工業(yè)大學;2007年
,本文編號:1856271
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1856271.html