膠圈接口管道與土摩擦及滑動特性研究
本文選題:球墨鑄鐵管道 + 土彈簧模型; 參考:《河南工業(yè)大學(xué)》2017年碩士論文
【摘要】:膠圈接口球墨鑄鐵管道在城市基礎(chǔ)設(shè)施建設(shè)中有著廣泛的應(yīng)用,是城市管網(wǎng)的重要組成部分。地震等地質(zhì)災(zāi)害會造成埋地管道的嚴(yán)重破壞,管土軸向摩阻力是埋地管道抗震設(shè)計(jì)中的重要參數(shù),對于沿管道方向的位移傳遞系數(shù)影響較大。鑒于此,本課題從地面剪切波作用下埋地管道的受力情況出發(fā),設(shè)計(jì)了相關(guān)試驗(yàn)項(xiàng)目。試驗(yàn)主要包括三部分。一部分是覆土條件下,膠圈接口管道試驗(yàn)。在該過程中首先固定承口管道,進(jìn)行了軸向拉推插口管道的加載試驗(yàn);然后解除承口端固結(jié)約束,進(jìn)行了軸向拉推插口管道的加載試驗(yàn)。第二部分是覆土條件下,分別對插口管道和承口管道進(jìn)行了軸向加載試驗(yàn)。試驗(yàn)過程中,通過改變埋深、埋長、加載速率等因素研究了影響管土軸向摩阻力的重要因素。第三部分是不覆土條件下,對膠圈接口管道進(jìn)行軸向加載試驗(yàn)。通過試驗(yàn)研究得出管土軸向阻力與管道埋深、加載速率成正相關(guān)關(guān)系,與埋長呈近似線性關(guān)系。加載初始階段,管道的力和位移曲線呈線彈性變化趨勢,此后加載階段,對于承口管道,管道的力和位移曲線斜率減小,摩阻力仍呈遞增趨勢,且無峰值出現(xiàn);對于插口管道,摩阻力達(dá)到峰值后,呈遞減趨勢。通過數(shù)值模型分析得出土體重度、埋深、管徑、管土間摩擦系數(shù)是影響數(shù)值分析結(jié)果的重要參數(shù)。且這些參數(shù)與管土間軸向摩阻力呈正相關(guān)。管道軸向應(yīng)力沿荷載作用方向呈依次增大趨勢。通過理論公式計(jì)算、試驗(yàn)結(jié)果、數(shù)值分析結(jié)果三者的對比發(fā)現(xiàn),理論結(jié)算結(jié)果和數(shù)值分析結(jié)果較為接近,相較于試驗(yàn)結(jié)果偏小。本文基于管-土相對變形理論,通過理論公式計(jì)算、試驗(yàn)研究、數(shù)值模型分析三種研究方法較為系統(tǒng)地分析研究了膠圈接口管道膠圈力學(xué)性能及管土軸向摩阻力的問題,并得出了相應(yīng)結(jié)論,對于管道抗震設(shè)計(jì)具有一定參考意義。
[Abstract]:The ductile iron pipe with rubber ring interface is widely used in urban infrastructure construction and is an important part of urban pipe network. Earthquake and other geological disasters will cause serious damage to buried pipelines. The axial friction of pipe and soil is an important parameter in seismic design of buried pipelines, which has a great influence on the displacement transfer coefficient along the pipeline direction. In view of this, based on the stress of buried pipeline under the action of surface shear wave, the related test items are designed. The experiment consists of three parts. Part of the test is under the condition of overlying soil, the test of the sealing joint pipe. In the process, the bearing pipe is first fixed, and the loading test of the axial pull push pipe is carried out, and then the consolidation constraint at the end of the bearing is released, and the loading test of the axial pull push socket pipe is carried out. The second part is the axial loading test of the socket pipe and the socket pipe under the condition of soil overburden. In the course of the experiment, the important factors affecting the axial friction of the pipe and soil were studied by changing the depth of buried, the length of the buried and the loading rate. The third part is the axial loading test of the apron connection pipe without soil overburden. The experimental results show that the axial resistance of pipe-soil has a positive correlation with the buried depth and loading rate of the pipeline, and an approximate linear relationship with the buried length. At the initial stage of loading, the force and displacement curves of the pipeline show a linear elastic change trend, then, in the loading stage, the slope of the force and displacement curve of the pipeline decreases, the friction resistance of the pipeline is still increasing, and there is no peak value; for the pipe with the socket, the slope of the force and displacement curve of the pipeline decreases, and no peak value appears. When the friction reaches the peak value, it tends to decrease. Through the numerical model analysis, it is concluded that the soil weight, buried depth, pipe diameter and friction coefficient between pipes and soils are the important parameters that affect the results of numerical analysis. These parameters are positively correlated with the axial friction between pipe and soil. The axial stress of pipeline increases in turn along the direction of load. Through theoretical formula calculation, experimental results and numerical analysis results, it is found that the theoretical results and the numerical results are close to each other, which is smaller than that of the experimental results. Based on the theory of the relative deformation of pipe and soil, the mechanical properties and axial friction of the pipe and soil in the pipeline are studied systematically by three research methods, namely, theoretical formula calculation, experimental study and numerical model analysis. The corresponding conclusions are obtained, which have certain reference significance for the seismic design of pipelines.
【學(xué)位授予單位】:河南工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU990.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 薛娜;李鴻晶;李秀菊;金瀏;翟聚云;;穿越正斷層埋地管線的破壞模式分析[J];重慶大學(xué)學(xué)報;2016年02期
2 葉朝良;高新強(qiáng);宋鶴;;玻璃鋼夾砂管管土摩擦系數(shù)室內(nèi)模型試驗(yàn)研究[J];石家莊鐵道大學(xué)學(xué)報(自然科學(xué)版);2015年03期
3 陳春光;楊慶華;孔杰;劉志文;侯翠婷;;管-土相互作用的試驗(yàn)研究[J];特種結(jié)構(gòu);2012年02期
4 劉潤;閆澍旺;王洪播;張軍;徐余;;砂土對埋設(shè)管線約束作用的模型試驗(yàn)研究[J];巖土工程學(xué)報;2011年04期
5 李杰;;生命線工程的研究進(jìn)展與發(fā)展趨勢[J];土木工程學(xué)報;2006年01期
6 韓揚(yáng),孫紹平;地下管道抗震分析中的若干參數(shù)[J];特種結(jié)構(gòu);1999年03期
7 王位升;我國埋地式砼管外荷載計(jì)算的現(xiàn)狀及對比分析[J];混凝土與水泥制品;1994年01期
8 盧明良;王錫田;;埋地?zé)崃艿滥Σ亮υ囼?yàn)研究[J];特種結(jié)構(gòu);1991年02期
相關(guān)博士學(xué)位論文 前3條
1 佘艷華;機(jī)械沖擊荷載對鄰近埋地管道的影響及控制研究[D];中國工程物理研究院;2012年
2 周靜海;地下供水管線破壞試驗(yàn)及抗震分析[D];大連理工大學(xué);2010年
3 韓陽;城市地下管網(wǎng)系統(tǒng)的地震可靠性研究[D];大連理工大學(xué);2002年
相關(guān)碩士學(xué)位論文 前5條
1 包鋼;新興公司球墨鑄鐵管國內(nèi)營銷策略研究[D];哈爾濱工業(yè)大學(xué);2014年
2 孫中菊;地面堆載作用下埋地管道的力學(xué)性狀分析[D];浙江大學(xué);2014年
3 陳勇;埋地管道在地震波作用下的變形研究[D];西南交通大學(xué);2013年
4 王洪播;海底管線水平向屈曲過程中管土相互作用研究[D];天津大學(xué);2010年
5 黃吉龍;大口徑玻璃鋼夾砂頂管室內(nèi)試驗(yàn)與數(shù)值分析[D];上海交通大學(xué);2007年
,本文編號:1833845
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1833845.html