變截面組合桁架臂非線性穩(wěn)定性理論分析與動(dòng)態(tài)仿真研究
本文選題:組合桁架臂 + 非線性; 參考:《太原科技大學(xué)》2017年碩士論文
【摘要】:港口、海工裝備、第三代核電等領(lǐng)域模塊化與大型化吊裝作業(yè)的需求,促使起重機(jī)起重量趨向重載化、自重趨向輕量化、空間趨向大型化、操作趨向智能化、作業(yè)趨向復(fù)雜化、結(jié)構(gòu)趨向柔性化,而精益的生產(chǎn)離不開高品質(zhì)、高效率、高安全性能的搬運(yùn)系統(tǒng),優(yōu)質(zhì)高強(qiáng)鋼的應(yīng)用使起重機(jī)臂架結(jié)構(gòu)輕質(zhì)化卻導(dǎo)致結(jié)構(gòu)柔度增大,重載作用下結(jié)構(gòu)幾何變形具有較強(qiáng)的非線性性,若仍采用基于小位移假定的線彈性理論對(duì)大長(zhǎng)細(xì)比桁架臂結(jié)構(gòu)進(jìn)行線性分析,將偏離結(jié)構(gòu)實(shí)際受力狀態(tài),得出偏于安全或不正確的結(jié)果,切乎實(shí)際的設(shè)計(jì)理論有助于維持結(jié)構(gòu)強(qiáng)度與穩(wěn)定性之間的平衡;其次,重載起升過程中,極限大角度工況下倘若有效載荷意外喪失,因臂架彈性、重物重力、鋼絲繩張力所蘊(yùn)藏勢(shì)能瞬間釋放之故,對(duì)結(jié)構(gòu)產(chǎn)生劇烈沖擊與振動(dòng),為臂架防后傾裝置以及系統(tǒng)安全性帶來(lái)新挑戰(zhàn),再者,如何準(zhǔn)確模擬反向沖擊載荷,對(duì)結(jié)構(gòu)所處真實(shí)環(huán)境,避免夸大或縮小結(jié)構(gòu)動(dòng)力響應(yīng),具有現(xiàn)實(shí)意義。本文選取某型起重機(jī)大長(zhǎng)細(xì)比組合桁架臂為研究對(duì)象,基于不同方法理論設(shè)計(jì)校核臂架結(jié)構(gòu)強(qiáng)度、剛度及穩(wěn)定性(整體穩(wěn)定性、局部穩(wěn)定性),重點(diǎn)落腳于穩(wěn)定性的非線性求解,通過引入廣義裕度概念,評(píng)價(jià)不同方法理論體系優(yōu)劣,遴選出最佳設(shè)計(jì)方法,借助ANSYS對(duì)其驗(yàn)證,并對(duì)仿真要點(diǎn)詳細(xì)論述;以多柔體動(dòng)力學(xué)為理論指導(dǎo)基礎(chǔ),以虛擬樣機(jī)技術(shù)為解題手段,聯(lián)立ANSYS與ADAMS建造臂架剛?cè)狁詈夏P?對(duì)有效載荷意外喪失工況進(jìn)行理論建模和數(shù)值仿真,探討彈性臂架在瞬態(tài)沖擊激勵(lì)下的振動(dòng)響應(yīng),動(dòng)態(tài)分析防后傾裝置受力特征,此外,遵循單一控制變量原則,深入挖掘不同設(shè)計(jì)因子(有效載荷意外喪失時(shí)間、滑輪組倍率、起升加速時(shí)間)對(duì)臂架動(dòng)態(tài)特性影響規(guī)律,為臂架的設(shè)計(jì)改進(jìn)以及防后傾裝置的選型、合理布置提供重要的理論參考依據(jù)。
[Abstract]:The demand for modularization and large-scale hoisting operations in the fields of port, marine engineering equipment, third generation nuclear power, etc., has prompted crane lifting weight to become heavy, self-weight to be lighter, space to be large, operation to be intelligent, and operation to be more complicated. The structure tends to be flexible, but lean production can not do without high quality, high efficiency, high safety performance of the handling system. The application of high quality and high strength steel makes the crane jib structure lightweight, but leads to the increase of structural flexibility. The geometric deformation of the structure under heavy load has strong nonlinearity. If the linear elastic theory based on the assumption of small displacement is still used for linear analysis of the truss arm structure with large slenderness ratio, it will deviate from the actual stress state of the structure. The result is that the actual design theory is helpful to maintain the balance between the strength and stability of the structure. Secondly, in the course of heavy load hoisting, if the payload is lost unexpectedly under the condition of extreme large angle, Because of the sudden release of the potential energy contained in the elasticity of the boom, the gravity of the heavy object and the tension of the wire rope, it has produced violent impact and vibration on the structure, which brings new challenges to the anti-tilt device of the boom and the safety of the system. How to simulate the reverse impact load accurately is of practical significance to the real environment of the structure and to avoid exaggerating or reducing the dynamic response of the structure. In this paper, a large aspect ratio composite truss arm of a certain crane is chosen as the research object. Based on different methods, the strength, stiffness and stability of the jib structure are designed and checked (global stability, local stability and nonlinear solution of stability). By introducing the concept of generalized margin, this paper evaluates the advantages and disadvantages of different methods, selects the best design method, verifies it by means of ANSYS, and discusses the main points of simulation in detail. The rigid-flexible coupling model of boom is constructed by using virtual prototyping technology and ANSYS and ADAMS, and the theoretical model and numerical simulation of the accidental loss of payload are carried out, and the vibration response of elastic boom under transient shock excitation is discussed. In addition, according to the principle of single control variable, the influence of different design factors (the time of accidental loss of payload, the ratio of pulley group, the time of hoisting acceleration) to the dynamic characteristics of boom is analyzed dynamically. It provides an important theoretical reference for the design and improvement of the boom, the selection of the anti-tilting device and the reasonable arrangement.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH21
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王剛;齊朝暉;孔憲超;;含機(jī)構(gòu)位移起重機(jī)主副臂組合臂架結(jié)構(gòu)幾何非線性分析[J];工程力學(xué);2015年07期
2 王剛;齊朝暉;王欣;;履帶式起重機(jī)折線式臂架結(jié)構(gòu)承載能力[J];機(jī)械工程學(xué)報(bào);2015年03期
3 郭皓;高崇仁;殷玉楓;張彥;李秋來(lái);;基于弧長(zhǎng)法的起重機(jī)伸縮臂架屈曲承載力分析[J];起重運(yùn)輸機(jī)械;2014年11期
4 李發(fā)宗;童水光;王相兵;程曉民;;船用挖掘機(jī)機(jī)械臂剛?cè)狁詈蟿?dòng)力學(xué)及特性研究[J];振動(dòng)與沖擊;2014年20期
5 張趙威;吳運(yùn)新;任武;;一種混凝土泵車臂架多姿態(tài)固有頻率的數(shù)值算法[J];振動(dòng)與沖擊;2014年11期
6 周奇才;李文軍;周在磊;熊肖磊;;人字形組合臂架空間壓桿線性穩(wěn)定性分析[J];中國(guó)機(jī)械工程;2013年24期
7 付玲;喻樂康;劉洋;李瑩松;張勁;;細(xì)長(zhǎng)型桁架起重臂卸載沖擊動(dòng)力學(xué)研究[J];起重運(yùn)輸機(jī)械;2013年01期
8 陸念力;孟麗霞;;基于二階理論的彈性約束變截面懸臂梁剛度與穩(wěn)定性分析[J];工程力學(xué);2012年12期
9 李金平;王建明;焦生杰;薛運(yùn)鋒;;基于響應(yīng)面法的履帶起重機(jī)桁架臂壓彎構(gòu)件穩(wěn)定性的可靠性分析[J];機(jī)械科學(xué)與技術(shù);2012年12期
10 蘭朋,劉曼蘭,陸念力;彎曲梁柱結(jié)構(gòu)平面外失穩(wěn)的研究[J];工程力學(xué);2005年S1期
相關(guān)博士學(xué)位論文 前1條
1 孟麗霞;起重機(jī)變截面復(fù)雜梁桿系統(tǒng)穩(wěn)定性與非線性大位移研究[D];哈爾濱工業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前9條
1 王金平;起重機(jī)臂架結(jié)構(gòu)幾何非線性穩(wěn)定性分析[D];大連理工大學(xué);2015年
2 黎偉福;履帶起重機(jī)桁架臂非線性強(qiáng)度及穩(wěn)定性分析[D];吉林大學(xué);2014年
3 李洪富;起重機(jī)桁架式單臂架結(jié)構(gòu)的參數(shù)化設(shè)計(jì)與優(yōu)化[D];武漢理工大學(xué);2014年
4 董青;非線性混合臂架系統(tǒng)靜動(dòng)態(tài)理論分析與仿真研究[D];太原科技大學(xué);2014年
5 盧青梅;高空作業(yè)車不同簡(jiǎn)化模型對(duì)比分析研究[D];大連理工大學(xué);2012年
6 韓俊杰;動(dòng)臂塔式起重機(jī)防后傾裝置的研究[D];大連理工大學(xué);2012年
7 胡永明;基于多體動(dòng)力學(xué)的整車建模與仿真分析研究[D];大連理工大學(xué);2012年
8 常大帥;起重機(jī)臂架的非線性穩(wěn)定性分析[D];東北大學(xué);2011年
9 王佳;具有主副臂結(jié)構(gòu)的起重機(jī)格構(gòu)式臂架整體穩(wěn)定性研究[D];哈爾濱工業(yè)大學(xué);2006年
,本文編號(hào):1832579
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1832579.html