催化臭氧化技術(shù)去除典型的抗生素及抗性基因研究
本文選題:給水廠 + 抗生素 ; 參考:《山東建筑大學(xué)》2017年碩士論文
【摘要】:本論文檢測(cè)分析了某市內(nèi)某深度處理給水廠中5種典型抗生素紅霉素(ETM)、磺胺甲惡唑(SMX)、磺胺嘧啶(SD)、土霉素(TC)和四環(huán)素(OTC)的含量,并對(duì)抗生素在該水廠生產(chǎn)性工藝流程中的沿程變化和去除規(guī)律進(jìn)行了研究;長期過量的抗生素持續(xù)不斷的排入環(huán)境中,造成很高的抗生素選擇壓力,誘導(dǎo)微生物產(chǎn)生抗生素抗性基因(ARGs)。大量研究表明ARGs廣泛存在于土壤,地表水甚至是地下水中。為保障飲水安全,研究選用4種常見的抗生素抗性基因sul?、sulⅡ、tet A和tet G為目標(biāo)基因,通過實(shí)時(shí)熒光定量PCR方法對(duì)該水廠基因濃度進(jìn)行了絕對(duì)定量,分析了該水廠中4種抗性基因的分布情況;以磺胺嘧啶為研究對(duì)象,考察了不同的催化臭氧氧化技術(shù)對(duì)抗生素的去除效果,在此基礎(chǔ)上通過考察磺胺嘧啶在降解過程中的可生物降解性和毒理性的變化對(duì)不同的催化臭氧氧化技術(shù)進(jìn)行評(píng)價(jià)。研究結(jié)果表明,在三次樣品采集中該水廠進(jìn)水均含有5種抗生素,其中磺胺甲惡唑的濃度最高為59.40 ng/L,紅霉素的濃度最低為0.87 ng/L;5種抗生素含量沿水廠工藝流程均呈現(xiàn)出逐漸降低的趨勢(shì)。在水廠出水中抗生素的含量大大降低,有2種抗生素未檢出,其余3種抗生素濃度均在7 ng/L以下。水廠整體工藝對(duì)目標(biāo)抗生素具有良好的去除效果,總?cè)コ蔬_(dá)89.9%,其中臭氧氧化和生物活性炭處理單元對(duì)抗生素的去除效果明顯,總絕對(duì)去除率分別為71.2%和13.1%;高密度沉淀單元、砂濾單元和加氯消毒單元對(duì)抗生素的去除貢獻(xiàn)不大,總?cè)コ示?%以下。臭氧氧化和生物活性炭單元為水廠的深度處理單元,高密度沉淀、砂濾和加氯消毒單元為水廠的傳統(tǒng)處理單元,由研究結(jié)果可知,相比傳統(tǒng)處理工藝,深度處理工藝對(duì)抗生素的去除效果更好。對(duì)該水廠進(jìn)水及各處理單元出水中細(xì)菌進(jìn)行DNA提取及熒光定量PCR檢測(cè)。研究表明,該水廠進(jìn)水中均含有4種抗生素抗性基因,sul?、sulⅡ、tet A和tet G的濃度分別為2.54×10~3copies/ml、1.36×10~3 copies/ml、1.47×102 copies/ml和0.064×102 copies/ml。4種抗性基因的濃度沿該水廠工藝流程呈現(xiàn)出先降低后升高再降低的趨勢(shì)。其中,臭氧氧化單元出水和加氯消毒單元出水中ARGs的含量最低,未檢測(cè)出ARGs;生物活性炭單元出水中ARGs的含量升高,4種ARGs的濃度分別為1.12×10~3 copies/ml、0.18×102 copies/ml、0.05×102 copies/ml和0.14×102copies/ml。不同的催化臭氧氧化技術(shù)對(duì)抗生素的去除作用和礦化程度不同。以磺胺嘧啶為研究對(duì)象,比較了單獨(dú)O_3氧化、O_3/H_2O_2、O_3/UV及O_3/UV/H_2O_2對(duì)磺胺嘧啶的去除效果。結(jié)果表明,p H在中性條件下,4種氧化技術(shù)對(duì)磺胺嘧啶均有良好的去除效果,在臭氧投加量為10mg/L時(shí),O_3/UV/H_2O_2幾乎能夠完全去除磺胺嘧啶,其余三種技術(shù)對(duì)磺胺嘧啶的去除率分別為82.5%、91.7%和98.6%;在臭氧投加量為12 mg/L時(shí),O_3/UV也能完全去除磺胺嘧啶。因此,O_3/UV/H_2O_2對(duì)磺胺嘧啶的去除效果優(yōu)于O_3/UV優(yōu)于O_3/H_2O_2優(yōu)于單獨(dú)O_3氧化。單獨(dú)O_3氧化對(duì)磺胺嘧啶的礦化程度較低,在臭氧投加量為12 mg/L時(shí),TOC的去除率為19.6%,其他三種技術(shù)對(duì)TOC的去除率分別為34.60%、46.54%和55.87%。由此可知,催化臭氧化比單獨(dú)O_3對(duì)磺胺嘧啶的礦化程度更高。為了進(jìn)一步對(duì)4種催化臭氧氧化技術(shù)進(jìn)行分析對(duì)比,分別檢測(cè)了氧化前后磺胺嘧啶溶液的可生物降解性和生物急性毒性的變化。結(jié)果表明,隨著臭氧投加量的增加,溶液的可生物降解性逐漸增大。不同的催化臭氧氧化技術(shù)對(duì)磺胺嘧啶溶液的可生物降解性影響不同,當(dāng)臭氧投加量從0 mg/L增加到12 mg/L時(shí),經(jīng)單獨(dú)O_3氧化后,溶液中BDOC的含量從0.107mg/L增加到0.875 mg/L;經(jīng)O_3/H_2O_2、O_3/UV和O_3/UV/H_2O_2處理后,溶液中BDOC的濃度分別從0.107 mg/L增加到1.007 mg/L、1.046 mg/L和1.29 mg/L。由結(jié)果可知,催化臭氧氧化技術(shù)氧化磺胺嘧啶后溶液的可生物降解性更強(qiáng)。向氧化前后的磺胺嘧啶溶液中分別加入發(fā)光細(xì)菌菌液,靜置15 min后測(cè)定發(fā)光細(xì)菌的發(fā)光強(qiáng)度,從而得出溶液對(duì)發(fā)光細(xì)菌的抑制率。氧化前不同濃度的磺胺嘧啶溶液對(duì)發(fā)光細(xì)菌的抑制表現(xiàn)出良好的線性關(guān)系,磺胺嘧啶的EC20為562.7 mg/L,EC50為1235.35 mg/L。隨著氧化時(shí)間的延長,溶液對(duì)發(fā)光細(xì)菌的抑制率逐漸升高,當(dāng)氧化時(shí)間延長至140 min時(shí),四種技術(shù)氧化磺胺嘧啶后對(duì)發(fā)光細(xì)菌的發(fā)光抑制率分別達(dá)到95.55%、96.34%、91.6%和99.85%。
[Abstract]:In this paper, the contents of 5 typical antibiotics, erythromycin (ETM), sulfonamoxazole (SMX), sulfadiazine (SD), oxytetracycline (TC) and tetracycline (OTC) in a certain water treatment plant, were examined and analyzed. The variation and removal of antibiotics in the production process of the water plant were studied. A large number of studies have shown that ARGs exists widely in soil, surface water and even underground water. 4 common antibiotic resistance genes, Sul, Sul II, Tet A and Tet G, are selected as the target genes for the safety of drinking water, and a large number of studies have shown that the antibiotic resistance gene (ARGs) is induced by a high number of antibiotics. The real time fluorescence quantitative PCR method was used to quantify the gene concentration in the water plant, and the distribution of 4 resistant genes in the water plant was analyzed. The effect of different catalytic ozonooxidation on the removal of antibiotics was investigated. On this basis, the bioavailability of sulfadiazine in the degradation process was investigated. Different catalytic ozonation techniques were evaluated for degradation and toxicity. The results showed that in the three sample collection, the water plant had 5 kinds of antibiotics, of which the concentration of sulfamethoxazole was 59.40 ng/L and the concentration of erythromycin was the lowest 0.87 ng/L; the content of 5 kinds of antibiotics was presented along the waterworks process. The trend of gradual reduction is that the content of antibiotics in water works is greatly reduced, 2 antibiotics are not detected, and the other 3 kinds of antibiotics are under 7 ng/L. The overall process of the water plant has a good removal effect on the target antibiotics, the total removal rate is 89.9%, in which the ozone oxidation and biological activated carbon treatment unit have the effect of the removal of antibiotics. The total removal rates of Guo Mingxian were 71.2% and 13.1%, respectively. High density sedimentation unit, sand filter unit and chlorination unit have little contribution to the removal of antibiotics, the total removal rate is below 5%. Ozone oxidation and bioactive carbon unit are the depth treatment unit of water plant, high density precipitation, sand filtration and chlorination unit are the traditional parts of water plant. The result of the study shows that compared with the traditional processing technology, the depth treatment process has better effect on the removal of antibiotics. The DNA extraction and fluorescence quantitative PCR detection of the water in the water plant and the effluent of each treatment unit have been carried out. The study shows that the water plant contains 4 kinds of antibiotic resistance genes, Sul? Sul II, Tet A and Tet G The concentration of 2.54 * 10~3copies/ml, 1.36 x 10~3 copies/ml, 1.47 x 102 copies/ml and 0.064 x 102 copies/ml.4 resistance genes showed a trend of decreasing and then decreasing along the process of the water plant. Among them, the content of ARGs in the effluent of the ozonation unit and the effluent of the chlorination disinfection unit was the lowest, and the ARGs was not detected; biological activity was not detected. The content of ARGs in the effluent of sexual carbon unit increased. The concentration of the 4 ARGs was 1.12 x 10~3 copies/ml, 0.18 x 102 copies/ml, 0.05 x 102 copies/ml and 0.14 x 102copies/ml., and different catalytic ozonoooooooooooooooooooooooooooooooooooooooooooooooodiazine was used as the research object, and the individual O_3 oxidation, O_3/H_2O_2, O were compared. The results of the removal of sulfadiazine by _3/UV and O_3/UV/H_2O_2 show that, under the neutral condition, P H has a good removal effect on sulfadiazine by 4 kinds of oxidation technology. When the dosage of ozone is 10mg/L, O_3/UV/H_2O_2 can almost completely remove sulfadiazine. The removal rates of the other three techniques to sulfadiazine are 82.5%, 91.7% and 98.6, respectively. %; when the dosage of ozone is 12 mg/L, O_3/UV can also completely remove sulfadiazine. Therefore, the removal effect of O_3/UV/H_2O_2 on sulfadiazine is better than that of O_3/UV, which is superior to O_3/H_2O_2 alone by O_3 oxidation. The mineralization degree of sulfadiazine by O_3 oxidation alone is lower. When the dosage of ozone is added to 12 mg/L, the removal rate of TOC is 19.6%, and the other three techniques are used. The removal rates of TOC were 34.60%, 46.54% and 55.87%. respectively. As a result, the catalytic ozonation was higher than the individual O_3 on sulfadiazine. In order to further analyze the 4 kinds of ozonization techniques, the biodegradability and biological acute toxicity of sulfadiazine solution before and after oxidation were detected. With the increase of ozone dosage, the biodegradability of the solution increases gradually. The biodegradability of the different catalytic ozonooxidation technology has different effects on the biodegradability of the sulfadiazine solution. When the dosage of ozone is increased from 0 mg/L to 12 mg/L, the content of BDOC in the solution increases from 0.107mg/L to 0.875 mg/L after the O_3 oxidation. By O_3/H_2O_2, the content of the solution is increased to 0.875 mg/L. After the treatment of O_3/UV and O_3/UV/H_2O_2, the concentration of BDOC in the solution increased from 0.107 mg/L to 1.007 mg/L, 1.046 mg/L and 1.29 mg/L., and the results showed that the biodegradability of the solution was stronger after the oxidation of the azimouracil by the ozonoooooooooooooooooooooooooooooooooooooooooooooidazimidine solution to the sulfadiazine solution, respectively, after the statically set of 15 min. The luminescence intensity of the luminescent bacteria was determined, and the inhibition rate of the solution to the luminescent bacteria was obtained. The inhibition of the luminescent bacteria by the sulfadiazine solution at different concentrations before oxidation showed a good linear relationship, the EC20 of sulfadiazine was 562.7 mg/L, and the EC50 was 1235.35 mg/L., with the prolongation of the oxidation time, the inhibition rate of the solution on the luminescent bacteria was gradually increased. When the oxidation time was prolonged to 140 min, the inhibition rates of four kinds of technology to sulfadiazine on luminescent bacteria reached 95.55%, 96.34%, 91.6% and 99.85%. respectively.
【學(xué)位授予單位】:山東建筑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU991.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前3條
1 安文婷;抗生素濫用的現(xiàn)狀與對(duì)策[J];大眾標(biāo)準(zhǔn)化;2004年12期
2 姜誠;黃慧;;游走在崩潰邊緣的抗生素[J];科技視界;2012年24期
3 徐光婉;李江濱;蔡玉蓮;陳夢(mèng)婷;;醫(yī)學(xué)院大學(xué)生對(duì)抗生素認(rèn)知和使用情況的調(diào)查與分析[J];科技視界;2013年13期
相關(guān)會(huì)議論文 前10條
1 肖永紅;;抗生素濫用醫(yī)學(xué)與社會(huì)后果[A];抗生素質(zhì)量與安全論壇論文集[C];2008年
2 周書敏;劉緯;;淺析抗生素應(yīng)用中的幾個(gè)誤區(qū)[A];2006第六屆中國藥學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2006年
3 李國平;王全溪;;為保證人畜健康 切勿濫用抗生素[A];第四屆第九次全國學(xué)術(shù)研討會(huì)暨飼料和動(dòng)物源食品安全戰(zhàn)略論壇論文集(上冊(cè))[C];2008年
4 王愛霞;;抗生素的臨床合理應(yīng)用[A];北京市《抗菌藥物臨床應(yīng)用指導(dǎo)原則》師資培訓(xùn)班教材[C];2005年
5 徐嘯晨;徐嘯晨;;我院兒科門診抗生素應(yīng)用情況的抽樣調(diào)查及分析[A];第二十屆全國兒科藥學(xué)學(xué)術(shù)會(huì)議暨首屆全國兒科中青年藥師論文報(bào)告會(huì)論文集[C];2009年
6 史穎;;抗生素的濫用分析[A];2009年中國藥學(xué)大會(huì)暨第九屆中國藥師周論文集[C];2009年
7 史穎;;抗生素的濫用分析[A];2010年中國藥學(xué)大會(huì)暨第十屆中國藥師周論文集[C];2010年
8 周筱青;朱士俊;;醫(yī)院的抗生素應(yīng)用政策 制定、實(shí)施和成效[A];中華醫(yī)院管理學(xué)會(huì)醫(yī)院感染管理專業(yè)委員會(huì)第九屆醫(yī)院感染管理學(xué)術(shù)年會(huì)論文匯編[C];2002年
9 邢紅霞;;抗生素使用管理的幾點(diǎn)思考[A];中華醫(yī)院管理學(xué)會(huì)醫(yī)院感染管理專業(yè)委員會(huì)第九屆醫(yī)院感染管理學(xué)術(shù)年會(huì)論文匯編[C];2002年
10 辛海莉;;抗生素的不合理應(yīng)用分析及對(duì)策的探討[A];中華醫(yī)院管理學(xué)會(huì)第十屆全國醫(yī)院感染管理學(xué)術(shù)年會(huì)論文匯編[C];2003年
相關(guān)重要報(bào)紙文章 前10條
1 早報(bào)特約評(píng)論員 張?zhí)锟?治濫用抗生素,干預(yù)一下好,但不夠[N];東方早報(bào);2007年
2 朱薇;濫用抗生素,可能使國人集體“耐藥”[N];新華每日電訊;2007年
3 本報(bào)深度報(bào)道組記者 倪秀萍;明天,,我們還有抗生素可用嗎?[N];南京日?qǐng)?bào);2010年
4 首席記者 楊帆 記者 李珩;警惕 抗生素入侵食品[N];重慶日?qǐng)?bào);2011年
5 吳帥;用正確的方式反抗生素濫用[N];醫(yī)藥經(jīng)濟(jì)報(bào);2011年
6 海報(bào)集團(tuán)全媒體中心特派記者 胡續(xù)發(fā);史貽云委員建議:重點(diǎn)治理抗生素濫用[N];海南日?qǐng)?bào);2013年
7 葉賢圣 山東省食品藥品監(jiān)督管理局;抗生素濫用需“復(fù)方”根治[N];醫(yī)藥經(jīng)濟(jì)報(bào);2014年
8 嚴(yán)國進(jìn) 江蘇省東臺(tái)市疾病預(yù)防控制中心;別讓農(nóng)村成抗生素濫用“重災(zāi)區(qū)”[N];中國中醫(yī)藥報(bào);2014年
9 彭卓;抗生素濫用拖垮農(nóng)村病號(hào)[N];新農(nóng)村商報(bào);2014年
10 實(shí)習(xí)記者 劉歡 通訊員 侯曉菊;醫(yī)院兒科濫用抗生素最嚴(yán)重[N];北京日?qǐng)?bào);2005年
相關(guān)博士學(xué)位論文 前10條
1 李英杰;河口水中溶解性物質(zhì)對(duì)磺胺類抗生素光降解行為的影響[D];大連理工大學(xué);2016年
2 余燕敏;基于畜牧廢水中抗生素降解的新型功能材料制備與應(yīng)用研究[D];中央民族大學(xué);2017年
3 劉鵬霄;城市污水處理廠中痕量抗生素的歸趨及其減排技術(shù)研究[D];大連理工大學(xué);2014年
4 劉崇海;抗生素誘導(dǎo)腸道菌群失調(diào)與肺部免疫狀態(tài)的關(guān)系[D];重慶醫(yī)科大學(xué);2007年
5 吳維;天津市供水系統(tǒng)中抗生素檢測(cè)與控制方法的研究[D];天津大學(xué);2012年
6 劉湛軍;亞抑菌濃度抗生素對(duì)紫色桿菌群體感應(yīng)系統(tǒng)的調(diào)控研究[D];中國海洋大學(xué);2013年
7 尹國宇;河口近岸氮素的削減途徑及抗生素的影響機(jī)理研究[D];華東師范大學(xué);2015年
8 王培;ClO_2消毒過程中抗生素及亞硝基二甲胺的行為研究[D];上海交通大學(xué);2011年
9 唐松林;單分散聚合物SPE微球的合成及其在抗生素等新興有機(jī)污染物檢測(cè)中的應(yīng)用[D];南京大學(xué);2014年
10 葉賽;水環(huán)境抗生素分析及全國沿岸陸源排海濃度分布研究[D];大連海事大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 樊亭亭;我國抗生素濫用規(guī)制研究[D];南京中醫(yī)藥大學(xué);2012年
2 呂宏婷;微孔介孔MIL-101的制備及吸附抗生素性能研究[D];昆明理工大學(xué);2015年
3 紀(jì)營雪;電廠飛灰對(duì)水體中典型抗生素的吸附特性研究[D];南京師范大學(xué);2015年
4 安情情;磺胺類抗生素與群體感應(yīng)抑制劑對(duì)費(fèi)氏弧菌的聯(lián)合毒性及機(jī)制初探[D];上海海洋大學(xué);2015年
5 杜雪;南昌市四種典型地表水體抗生素污染特征與生態(tài)風(fēng)險(xiǎn)評(píng)估[D];南昌大學(xué);2015年
6 胡慧;降鈣素原動(dòng)態(tài)變化指導(dǎo)長期昏迷氣管切開痰培養(yǎng)陽性患者抗生素治療方案[D];復(fù)旦大學(xué);2014年
7 張雁翼;兒童幽門螺桿菌抗生素耐藥相關(guān)基因的研究[D];浙江大學(xué);2015年
8 譚新;中法三家醫(yī)院新生兒科對(duì)晚發(fā)型膿毒癥的不合理抗生素應(yīng)用初步調(diào)查[D];重慶醫(yī)科大學(xué);2015年
9 王子龍;中藥代替抗生素對(duì)肉雞生產(chǎn)性能和品質(zhì)影響[D];河北工程大學(xué);2015年
10 祁彥潔;水中抗生素的檢測(cè)方法與非生物衰減行為研究[D];中國地質(zhì)大學(xué)(北京);2014年
本文編號(hào):1813765
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1813765.html