公共建筑中呼吸墻體的節(jié)能技術(shù)研究
發(fā)布時間:2018-04-18 18:41
本文選題:呼吸墻體 + 空氣層 ; 參考:《西安科技大學(xué)》2017年碩士論文
【摘要】:呼吸墻體因設(shè)置了中間空氣層,能夠有效的降低建筑能耗,同時具有保溫隔熱、降噪等優(yōu)點。隨著公共建筑能耗越來越大,具有節(jié)能優(yōu)勢的呼吸墻體應(yīng)用日益增多。為得到呼吸墻體的能耗影響因素、傳熱規(guī)律及墻體合理厚度,本文對呼吸墻體的節(jié)能技術(shù)加以研究,其研究結(jié)論具有重要的理論意義及工程應(yīng)用價值。本文以呼吸墻體為研究對象,通過實地調(diào)查,分析得出了呼吸墻體的材料及厚度是其能耗的主要影響因素。為了掌握呼吸墻體的節(jié)能效果,本文以實際工程為例,對呼吸墻體的熱工指標(biāo)進(jìn)行計算并對比相同構(gòu)造的普通墻體,得出其節(jié)能效率比普通墻體提高了18%。為了減少呼吸墻體的厚度及自重,提高結(jié)構(gòu)安全性,對墻體的材料及厚度進(jìn)行了優(yōu)化,對比得出優(yōu)化后呼吸墻體傳熱系數(shù)減小20.38%,熱惰性指標(biāo)增大20.67%。同時運用Fluent軟件模擬計算得出:呼吸墻體內(nèi)、外側(cè)及空氣層溫度分別降低1.9℃、2.2℃和0.2℃。證明優(yōu)化后呼吸墻體具有更好的節(jié)能性。為研究呼吸墻體的傳熱規(guī)律與變化特點,課題組通過實地搭建三組溫度實驗墻體,測試得出:(1)呼吸墻體一天中的溫度變化經(jīng)歷了四個階段(保溫-過渡-隔熱-保溫),在保溫隔熱階段溫度變化差異較大,而在過渡階段溫度變化差異不大。(2)呼吸墻體一天中的最高溫度出現(xiàn)比普通墻體滯后1小時。實驗證明呼吸墻體的熱工性能優(yōu)于普通墻體。為了驗證測試結(jié)果的可靠性,用Fluent軟件對三組實驗墻體進(jìn)行了模擬計算,結(jié)果基本一致。同時得出呼吸墻體比普通墻體傳熱量減少5.42W,也進(jìn)一步說明呼吸墻體的熱工性能優(yōu)于普通墻體。為了更好地推廣應(yīng)用呼吸墻體,本文選取了工程中常用的不同墻體材料,通過模擬分析及計算傳熱系數(shù)并對比規(guī)范指標(biāo),得出最佳空氣層厚度為40mm-60mm,同時分析發(fā)現(xiàn)呼吸墻體的高度變化對其傳熱性能影響不大。綜上所述,本文通過實際調(diào)研、理論計算、實驗測量及模擬驗算,得出呼吸墻體的熱工性能優(yōu)于普通墻體,具有良好的保溫隔熱性能;且得出其最佳的空氣層厚度范圍及高度、厚度等因素對墻體的影響。因此呼吸墻體不僅能夠廣泛的應(yīng)用于各類公共建筑的圍護(hù)結(jié)構(gòu)中,而且能為今后呼吸墻體的深入研究提供可靠參考依據(jù)。
[Abstract]:The breathing wall is equipped with intermediate air layer, which can effectively reduce building energy consumption, heat insulation, noise reduction and so on.With the increasing energy consumption of public buildings, the application of respiratory wall with energy saving advantage is increasing.In order to obtain the influencing factors of energy consumption, heat transfer law and reasonable thickness of breathing wall, the energy-saving technology of breathing wall is studied in this paper. The conclusion of the research has important theoretical significance and engineering application value.In this paper, the material and thickness of respiratory wall are the main influencing factors of energy consumption through field investigation.In order to grasp the energy-saving effect of the breathing wall, this paper takes the actual project as an example, calculates the thermal index of the breathing wall and compares the common wall with the same structure. It is concluded that the energy-saving efficiency of the breathing wall is increased by 18% than that of the ordinary wall.In order to reduce the thickness and weight of the breathing wall and improve the safety of the structure, the material and thickness of the wall are optimized. The heat transfer coefficient of the respiratory wall is reduced by 20.38 and the thermal inertia index is increased by 20.67 after the optimization.At the same time, the temperature of the inner, outer and air layer of the breathing wall is reduced by 1.9 鈩,
本文編號:1769578
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1769578.html
最近更新
教材專著