人字形防屈曲支撐鋼框架滯回能層間分布規(guī)律研究
本文選題:人字形中心支撐鋼框架 + 遠(yuǎn)場(chǎng)地震波; 參考:《蘇州科技大學(xué)》2017年碩士論文
【摘要】:現(xiàn)行抗震規(guī)范采用間接考慮延性的基于強(qiáng)度的設(shè)計(jì)理論,沒(méi)有充分考慮結(jié)構(gòu)的塑性性能;基于能量的設(shè)計(jì)方法揉合了力、位移、地震持時(shí)等參量,可對(duì)結(jié)構(gòu)進(jìn)行較全面的地震破壞評(píng)估。滯回能與結(jié)構(gòu)構(gòu)件密切相關(guān),其為能量設(shè)計(jì)方法的主要控制參數(shù),滯回能在結(jié)構(gòu)中的分布是能量設(shè)計(jì)方法不可或缺的一部分。本文采用ABAQUS軟件分析了遠(yuǎn)近場(chǎng)條件、地震動(dòng)要素、結(jié)構(gòu)自身參數(shù)對(duì)人字形防屈曲支撐鋼(BRB)框架滯回能層間分布模式影響,進(jìn)行了如下工作:1.設(shè)計(jì)了10×3×3.6×7.2、15×3×3.6×7.2、15×3×3.0×7.2、15×3×3.6×7.8、15×5×3.6×7.2和20×3×3.6×7.2(層數(shù)×跨數(shù)×層高(m)×跨度(m))六種人字形防屈曲支撐鋼框架算例,針對(duì)每一個(gè)算例選取符合選波原則的自然地震波和人工地震波。2.針對(duì)上述六種算例進(jìn)行彈塑性時(shí)程分析,分析了遠(yuǎn)近場(chǎng)、樓層數(shù)、峰值加速度(PGA)、阻尼比、強(qiáng)震持時(shí)、結(jié)構(gòu)層高、跨度、跨數(shù)和材料切線模量對(duì)人字形防屈曲支撐結(jié)構(gòu)滯回能層間分布模式影響。結(jié)果表明:在遠(yuǎn)場(chǎng)地震下地震動(dòng)峰值加速度和樓層數(shù)對(duì)防屈曲支撐鋼框架滯回能層間分布影響大,近場(chǎng)脈沖地震對(duì)結(jié)構(gòu)具有沖擊效應(yīng),層間側(cè)移角明顯超過(guò)規(guī)范規(guī)定值。3.本文給出了遠(yuǎn)場(chǎng)罕遇地震下人字形防屈曲支撐鋼框架滯回能層間分布擬合公式與遠(yuǎn)場(chǎng)下基于滯回能的人字形防屈曲支撐鋼框架設(shè)計(jì)流程。并運(yùn)用能量設(shè)計(jì)方法在相同設(shè)計(jì)條件下重新設(shè)計(jì)15×3×3.6×7.2結(jié)構(gòu)。結(jié)果表明:結(jié)構(gòu)滿(mǎn)足規(guī)范規(guī)定側(cè)移需求,層間剛度分布均勻。對(duì)比兩種不同設(shè)計(jì)方法設(shè)計(jì)的15層結(jié)構(gòu)可知,結(jié)構(gòu)大震下層間最大側(cè)移角基本不變,能量設(shè)計(jì)方法下結(jié)構(gòu)用鋼量相比減少了 10%。
[Abstract]:The current seismic code adopts the strength based design theory which indirectly considers ductility, and does not fully consider the plasticity of the structure, and the energy-based design method combines the parameters of force, displacement, earthquake duration, etc.The structure can be comprehensively evaluated for earthquake damage.The hysteretic energy is closely related to the structural members and is the main control parameter of the energy design method. The distribution of the hysteresis energy in the structure is an indispensable part of the energy design method.In this paper, the effects of far and near field conditions, ground motion elements and structural parameters on the distribution of hysteretic energy between layers of herringbone braced steel frame are analyzed by using ABAQUS software. The results are as follows: 1.Six examples of 10 脳 3 脳 3. 6 脳 7. 2 脳 3 脳 3 脳 3. 6 脳 7. 2 + 15 脳 3 脳 3 脳 3. 0 脳 7. 2 脳 3 脳 3 脳 3. 6 脳 7. 6 脳 7. 2 and 20 脳 3 脳 3. 6 脳 7. 2 (layers 脳 span 脳 height) 脳 span braced steel frames are designed. For each case, natural seismic waves and artificial seismic waves.Based on the elastoplastic time-history analysis of the six examples mentioned above, this paper analyzes the far and near field, the number of floors, the peak acceleration, the damping ratio, the height and span of the structure when strong earthquake is sustained.The effects of span number and material tangent modulus on the hysteretic energy distribution pattern of herringbone braced structures are investigated.The results show that the peak acceleration of ground motion and the number of floors have great influence on the distribution of hysteretic energy of steel frame with buckling braced steel frame under the far-field earthquake. The near-field pulse earthquake has impact effect on the structure, and the lateral displacement angle between layers is obviously higher than the standard value of .3.In this paper, a fitting formula for the distribution of hysteretic energy between the hysteretic energy layers of a herringbone braced steel frame and a hysteretic braced steel frame design flow chart based on hysteretic energy are given under rare earthquake in the far field.The energy design method is used to redesign 15 脳 3 脳 3.6 脳 7.2 structure under the same design conditions.The results show that the structure meets the requirement of lateral displacement and the stiffness distribution is uniform.Compared with the 15-story structure designed by two different design methods, it can be seen that the maximum lateral displacement angle between the lower layers of the structure is basically unchanged, and the amount of steel used in the structure under the energy design method is reduced by 10%.
【學(xué)位授予單位】:蘇州科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TU973
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張建新;李輝;李青寧;;建筑結(jié)構(gòu)抗震設(shè)計(jì)理論發(fā)展[J];四川建筑科學(xué)研究;2014年04期
2 馬寧;歐進(jìn)萍;吳斌;;基于能量平衡的梁柱剛接防屈曲支撐鋼框架設(shè)計(jì)方法[J];建筑結(jié)構(gòu)學(xué)報(bào);2012年06期
3 孫國(guó)華;顧強(qiáng);何若全;方有珍;;基于滯回耗能譜的鋼板剪力墻結(jié)構(gòu)性態(tài)設(shè)計(jì)方法[J];建筑結(jié)構(gòu)學(xué)報(bào);2011年11期
4 賈明明;呂大剛;張素梅;蔣守蘭;;防屈曲支撐鋼框架基于延性的抗震性能設(shè)計(jì)[J];工程力學(xué);2010年S2期
5 趙瑛;郭彥林;;防屈曲支撐框架設(shè)計(jì)方法研究[J];建筑結(jié)構(gòu);2010年01期
6 盛明強(qiáng);羅奇峰;;Northridge與ChiChi地震滯回耗能譜的比較[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年10期
7 程光煜;葉列平;;彈塑性SDOF系統(tǒng)的地震輸入能量譜[J];工程力學(xué);2008年02期
8 沙廣t,
本文編號(hào):1753850
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1753850.html