鋼管樁基坑支護(hù)穩(wěn)定性模型試驗(yàn)及數(shù)值模擬
本文選題:支護(hù)設(shè)計(jì) 切入點(diǎn):鋼管樁 出處:《中國(guó)礦業(yè)大學(xué)》2017年碩士論文
【摘要】:本文以北京某基坑1-1支護(hù)剖面為原型通過(guò)理論設(shè)計(jì)、模型試驗(yàn)、數(shù)值模擬研究了鋼管樁基坑支護(hù)的位移、應(yīng)力、變形及對(duì)基坑穩(wěn)定性的影響,對(duì)鋼管樁代替鉆孔灌注樁的可行性進(jìn)行了研究。通過(guò)理論計(jì)算設(shè)計(jì)了6種不同直徑、壁厚的鋼管樁代替鉆孔灌注樁進(jìn)行基坑支護(hù)。選用了最大、最小直徑的兩種鋼管樁進(jìn)行了物理模型試驗(yàn),試驗(yàn)結(jié)果表明大直徑管樁單根樁打樁引起的土體水平位移、豎向位移以及作用范圍均較大,但在相同支護(hù)區(qū)域內(nèi)土體水平位移的累積位移值差別不大。應(yīng)力監(jiān)測(cè)表明,打樁引起的土體應(yīng)力變化主要在樁體的下部分,小直徑管樁施工造成的土體應(yīng)力增幅大于大直徑管樁。對(duì)錘擊數(shù)的分析表明隨著管入土深度的增加大,將大直徑管樁打入土體的錘擊數(shù)增幅大于小直徑管樁,但小直徑管樁的擠土效應(yīng)更明顯;娱_(kāi)挖模擬表明土體的水平位移變化在基坑邊緣處最大,大、小兩種管樁開(kāi)挖引起的水平位移開(kāi)挖模擬值分別為3.23 mm、10.16 mm,現(xiàn)場(chǎng)實(shí)測(cè)值中最大值約為4 mm。小直徑管樁在開(kāi)挖后期模型箱邊緣土體有小部分垮落,大直徑的管樁開(kāi)挖過(guò)程中出現(xiàn)了土體的大范圍垮落。小直徑管樁保持樁后土體的整體性較好,但控制水平位移的能力較差,而大直徑管樁在支護(hù)時(shí)更需要與其他支護(hù)結(jié)構(gòu)結(jié)合使用。相似模擬的土體沉降趨勢(shì)與實(shí)測(cè)沉降值相似,大、小兩種管樁支護(hù)情況下的最終沉降值分別為-2 mm、-3.48 mm,實(shí)測(cè)最大值為-2.04 mm,根據(jù)模擬值與實(shí)測(cè)值可將土體的沉降變化分為3個(gè)階段:沉降發(fā)展階段、沉降過(guò)渡階段以及沉降穩(wěn)定階段,模型試驗(yàn)中沉降過(guò)渡階持續(xù)時(shí)間短。數(shù)值模擬表明,隨著鋼管樁直徑的增大,樁體的剛度增大,樁后土體的位移、管樁承受的應(yīng)力水平均變小,但鋼管樁直徑對(duì)基底隆起并無(wú)影響。樁后土體位移的數(shù)值模擬值、模型試驗(yàn)值、實(shí)測(cè)值均小于監(jiān)測(cè)報(bào)警值,樁身的應(yīng)力均遠(yuǎn)小于鋼材的強(qiáng)度設(shè)計(jì)值,表明所設(shè)計(jì)的鋼管樁滿(mǎn)足控制土體位移的要求且鋼管樁自身安全穩(wěn)定。以直徑1.0 m的鋼管樁為例,分析了布置間距對(duì)基坑的影響,建議在實(shí)際工程中采用2.0D間距布置鋼管樁。
[Abstract]:In this paper, the displacement, stress, deformation and the influence on the stability of a steel pipe pile foundation pit are studied by theoretical design, model test and numerical simulation based on the 1-1 supporting section of a foundation pit in Beijing.The feasibility of replacing bored pile with steel pipe pile is studied.Through theoretical calculation, six kinds of steel pipe piles with different diameters and wall thickness are designed to support foundation pit instead of bored piles.Two kinds of steel pipe piles with maximum and minimum diameters are selected for physical model test. The results show that the horizontal displacement, vertical displacement and action range of soil caused by single pile of large diameter pipe pile are large.However, the cumulative displacement of soil in the same supporting area is not different.Stress monitoring shows that the stress variation of soil caused by piling is mainly in the lower part of the pile, and the increase of soil stress caused by the construction of small diameter pipe pile is larger than that of large diameter pipe pile.The analysis of hammer number shows that with the increase of pipe depth, the increase of hammer hit number of large diameter pipe pile is larger than that of small diameter pipe pile, but the squeezing effect of small diameter pipe pile is more obvious.The simulation of excavation shows that the horizontal displacement of soil is the largest at the edge of the foundation pit, and the simulated values of the horizontal displacement caused by the excavation of two kinds of pipe piles are 3.23 mm and 10.16 mm, respectively, and the maximum value of the field measured value is about 4 mm.In the later stage of excavation, a small part of soil collapse occurred at the edge of the model box, and a large scale collapse occurred during the excavation of the large-diameter pipe pile.The small diameter pipe pile keeps the integrity of the soil after the pile, but the ability to control horizontal displacement is poor, while the large diameter pipe pile needs to be used in combination with other supporting structures.The settlement trend of similar simulated soil is similar to the measured settlement value.The final settlement values of the two types of pipe piles are 2.mm -3.48 mm and the measured maximum value is -2.04 mm. According to the simulated values and the measured values, the settlement changes of soil can be divided into three stages: the stage of settlement development, the stage of settlement transition and the stage of settlement stabilization.In the model test, the duration of settlement transition order is short.Numerical simulation shows that with the increase of the diameter of the steel pipe pile, the stiffness of the pile body increases, the displacement of the soil behind the pile and the stress level of the pipe pile become smaller, but the diameter of the steel tube pile has no effect on the uplift of the foundation.The numerical simulation values, model test values and measured values of the soil displacement behind the pile are all smaller than the monitoring alarm values, and the stress of the pile body is far less than the strength design value of the steel.The results show that the designed steel pipe pile can meet the requirement of controlling the displacement of soil and the steel pipe pile itself is safe and stable.Taking the steel pipe pile with diameter of 1.0 m as an example, the influence of layout spacing on foundation pit is analyzed, and it is suggested that the steel pipe pile should be arranged with 2.0D spacing in practical engineering.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TU473.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡欣;;模型試驗(yàn)?zāi)M不同工況下基坑開(kāi)挖對(duì)既有隧道的影響[J];路基工程;2015年06期
2 孟長(zhǎng)江;;福州站北廣場(chǎng)深基坑工程實(shí)例分析[J];鐵道工程學(xué)報(bào);2015年10期
3 黃雪峰;陳帥強(qiáng);馬龍;;懸臂式支護(hù)樁內(nèi)力分布規(guī)律試驗(yàn)研究[J];四川建筑科學(xué)研究;2015年01期
4 翟玉新;;鋼管樁與灌注樁結(jié)合支護(hù)方式應(yīng)用探索[J];鐵道建筑技術(shù);2013年11期
5 陳立宏;袁希雨;;砂土中旋挖擠擴(kuò)灌注樁的抗拔模型實(shí)驗(yàn)[J];北京交通大學(xué)學(xué)報(bào);2013年04期
6 李華;;盾構(gòu)開(kāi)挖區(qū)錨桿(索)快速清除施工技術(shù)[J];現(xiàn)代城市軌道交通;2012年06期
7 楊震偉;;基坑工程開(kāi)挖支護(hù)的數(shù)值計(jì)算分析[J];鐵道建筑;2012年05期
8 雷華陽(yáng);李肖;陸培毅;霍海峰;;管樁擠土效應(yīng)的現(xiàn)場(chǎng)試驗(yàn)和數(shù)值模擬[J];巖土力學(xué);2012年04期
9 王旭軍;;上海中心大廈裙房深大基坑工程圍護(hù)墻變形分析[J];巖石力學(xué)與工程學(xué)報(bào);2012年02期
10 李兆平;黃明利;王建;李文濤;;地鐵深基坑采用可回收錨索支護(hù)方案優(yōu)化設(shè)計(jì)[J];地下空間與工程學(xué)報(bào);2012年01期
相關(guān)博士學(xué)位論文 前4條
1 樊向陽(yáng);靜壓樁施工沉樁阻力及沉樁擠土效應(yīng)研究[D];同濟(jì)大學(xué);2007年
2 劉燕;地鐵換乘樞紐后建車(chē)站施工影響研究[D];同濟(jì)大學(xué);2007年
3 王建軍;基坑支護(hù)現(xiàn)場(chǎng)試驗(yàn)研究與數(shù)值分析[D];中國(guó)建筑科學(xué)研究院;2006年
4 俞曉;深基坑開(kāi)挖與支護(hù)的模型試驗(yàn)與ANSYS分析研究[D];武漢理工大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 賈景松;鋼管樁在攪拌樁復(fù)合土釘墻支護(hù)體系中的應(yīng)用研究[D];華南理工大學(xué);2015年
2 李瑩;北京市某深基坑工程剛性微型樁支護(hù)結(jié)構(gòu)研究[D];中國(guó)地質(zhì)大學(xué)(北京);2014年
3 劉暢;中國(guó)大陸地鐵報(bào)探析[D];湖南大學(xué);2014年
4 劉攀;成都地區(qū)排樁支護(hù)結(jié)構(gòu)土壓力研究[D];西南交通大學(xué);2014年
5 梁健;合肥某地鐵站深基坑樁錨聯(lián)合支護(hù)數(shù)值模擬與現(xiàn)場(chǎng)監(jiān)測(cè)[D];安徽建筑大學(xué);2014年
6 林敏博;大直徑超長(zhǎng)鋼管樁的土塞效應(yīng)研究[D];天津大學(xué);2014年
7 周小龍;青島地鐵土巖結(jié)合基坑支護(hù)中微型鋼管樁的試驗(yàn)研究[D];青島理工大學(xué);2013年
8 劉妮;基于原型樁基的鋼管樁壓—彎—剪荷載下受力特性的分析研究[D];西南交通大學(xué);2013年
9 趙雙益;超長(zhǎng)鉆孔灌注樁單樁豎向承載性能研究[D];中南大學(xué);2013年
10 晉霞;深基坑開(kāi)挖與鄰建基礎(chǔ)相互影響模型試驗(yàn)研究[D];蘭州交通大學(xué);2013年
,本文編號(hào):1723462
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1723462.html