基于不同建筑結(jié)構(gòu)形式的質(zhì)量調(diào)諧阻尼器性能研究
發(fā)布時間:2018-03-28 23:34
本文選題:質(zhì)量調(diào)諧阻尼器 切入點:SSI效應(yīng) 出處:《廣州大學(xué)》2017年碩士論文
【摘要】:質(zhì)量調(diào)諧阻尼器(TMD)作為一種有效的被動控制手段,由于其構(gòu)造簡單、成本低廉、易于維護(hù)等優(yōu)點而被廣泛應(yīng)用。TMD由質(zhì)量塊、彈簧元件和阻尼器組成。建筑結(jié)構(gòu)按照其橫向振動形式的不同,大致可分為三類:剪切型結(jié)構(gòu)、彎剪型結(jié)構(gòu)以及彎曲型結(jié)構(gòu)。然而,傳統(tǒng)TMD最優(yōu)設(shè)計參數(shù)的研究大多數(shù)是針對剪切型結(jié)構(gòu)展開。鑒于此,本文基于不同建筑結(jié)構(gòu)形式對TMD最優(yōu)設(shè)計參數(shù)開展了以下幾項研究工作:1)介紹了傳統(tǒng)TMD最優(yōu)參數(shù)的求解思路,在此基礎(chǔ)上,分析了剪切型結(jié)構(gòu)與TMD之間存在的傾角對TMD控制效果的影響。以理論推導(dǎo)形式給出了 TMD最優(yōu)參數(shù)的修正公式,并且給出了 TMD等效阻尼比的理論修正公式。通過算例分析驗證了修正公式的有效性與正確性。2)給出了考慮土—結(jié)構(gòu)動力相互作用(簡稱SSI效應(yīng))的TMD體系簡化模型,結(jié)合SOA算法提出了一種適用于SSI體系的TMD設(shè)計方法。分析了 SSI效應(yīng)對TMD控制效果的影響,發(fā)現(xiàn)SSI體系的自振周期較剛性地基假設(shè)會有一定程度的延長,且場地土越軟,SSI體系自振周期延長越多。3)將彎剪型結(jié)構(gòu)簡化為一根Timoshenko懸臂梁模型,充分考慮結(jié)構(gòu)彎曲變形產(chǎn)生的彎曲轉(zhuǎn)角對TMD動力特性的影響。以結(jié)構(gòu)位移響應(yīng)均方差為控制目標(biāo),提出了基于隨機(jī)權(quán)重粒子群算法對TMD進(jìn)行優(yōu)化設(shè)計的方法,該方法增加了對TMD質(zhì)量比的優(yōu)化。數(shù)值仿真結(jié)果表明,結(jié)構(gòu)彎曲變形產(chǎn)生的彎曲轉(zhuǎn)角會影響TMD的動力特性,從而影響TMD的控制效果。分析發(fā)現(xiàn),存在一個轉(zhuǎn)角系數(shù)限值,當(dāng)轉(zhuǎn)角系數(shù)大于該限值時,設(shè)計TMD時有必要考慮結(jié)構(gòu)彎曲變形的影響。4)將彎曲型結(jié)構(gòu)簡化為一根歐拉懸臂梁,使用有限單元法求解結(jié)構(gòu)特性矩陣,并給出了 TMD體系運(yùn)動方程。使用Newmark-β法對運(yùn)動方程進(jìn)行求解,并基于首次穿越破壞機(jī)制對TMD體系進(jìn)行了可靠度分析;谀M退火的粒子群算法對TMD進(jìn)行最優(yōu)參數(shù)求解。算例分析表明,TMD能有效控制彎曲型結(jié)構(gòu)的風(fēng)致振動,能有效提高結(jié)構(gòu)可靠度。5)以框剪結(jié)構(gòu)為例,基于結(jié)構(gòu)性能目標(biāo)提出一種TMD減震體系優(yōu)化設(shè)計方法。將高層結(jié)構(gòu)簡化為考慮集中參數(shù)的連續(xù)懸臂梁模型,并使用Rayleigh-Ritz法分析了結(jié)構(gòu)動力特性,以結(jié)構(gòu)位移響應(yīng)作為控制對象,以結(jié)構(gòu)層間位移角限值作為約束條件,基于遺傳算法對TMD進(jìn)行數(shù)值優(yōu)化設(shè)計。
[Abstract]:Mass tuned damper (TMD), as an effective passive control method, is widely used by mass block because of its advantages of simple construction, low cost and easy maintenance. Spring elements and dampers. Building structures can be broadly divided into three types according to their transverse vibration forms: shear structures, bending shear structures, and bending structures. Most of the research on the traditional TMD optimal design parameters is aimed at shear structure. In view of this, In this paper, based on the different building structure forms, the following research work on the optimal design parameters of TMD is carried out. (1) the idea of solving the traditional optimal parameters of TMD is introduced, and on this basis, The influence of the inclination between shear structure and TMD on the control effect of TMD is analyzed. The modified formula for the optimal parameters of TMD is given in the form of theoretical derivation. The theoretical correction formula of the equivalent damping ratio of TMD is given. The validity and correctness of the modified formula are verified by an example. (2) the simplified model of TMD system considering soil-structure dynamic interaction (SSI effect) is given. Based on the SOA algorithm, a design method of TMD for SSI system is proposed. The effect of SSI effect on the control effect of TMD is analyzed. It is found that the natural vibration period of SSI system will be prolonged to some extent than that of rigid foundation. Moreover, the softer the site soil is, the longer the natural vibration period is. 3) the bending shear structure is simplified as a Timoshenko cantilever beam model. The effect of bending angle caused by structural bending deformation on the dynamic characteristics of TMD is fully considered. Taking the mean variance of structural displacement response as the control object, a stochastic weighted particle swarm optimization method is proposed to optimize the design of TMD. The numerical simulation results show that the bending angle produced by the bending deformation of the structure will affect the dynamic characteristics of the TMD and thus the control effect of the TMD. It is found that there is a limit value of the rotation coefficient. When the angle coefficient is larger than the limit value, it is necessary to consider the influence of bending deformation on the design of TMD. (4) the bending structure is simplified as an Euler cantilever beam, and the finite element method is used to solve the structural characteristic matrix. The equation of motion of TMD system is given. The Newmark- 尾 method is used to solve the equation of motion. The reliability of TMD system is analyzed based on the first time traversing failure mechanism, and the optimal parameters of TMD are solved based on simulated annealing Particle Swarm Optimization (PSO) algorithm. The numerical results show that TMD can effectively control the wind-induced vibration of curved structures. Taking frame shear structure as an example, an optimal design method of TMD damping system based on structural performance objectives is proposed. The high-rise structure is simplified as a continuous cantilever beam model with concentrated parameters. The Rayleigh-Ritz method is used to analyze the dynamic characteristics of the structure. Taking the displacement response of the structure as the control object and the limit value of the displacement angle of the structure floor as the constraint condition, the numerical optimization design of the TMD is carried out based on genetic algorithm.
【學(xué)位授予單位】:廣州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU352.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈艷;張麗玲;張琦智;底大鈞;;基于三階和四階龍格庫塔法的GM(1,1)模型優(yōu)化及應(yīng)用[J];數(shù)學(xué)的實踐與認(rèn)識;2016年07期
2 謝禮立;曲哲;;論土木工程災(zāi)害及其防御[J];自然災(zāi)害學(xué)報;2016年01期
3 劉良坤;譚平;李祥秀;張穎;周福霖;;TMD控制系統(tǒng)的相位及控制效果分析[J];振動與沖擊;2015年11期
4 王志誠;許春榮;吳宏波;;崇啟大橋主橋鋼箱梁TMD系統(tǒng)設(shè)計參數(shù)計算研究[J];土木工程學(xué)報;2015年05期
5 陳鑫;李愛群;王泳;張志強(qiáng);;自立式高聳結(jié)構(gòu)風(fēng)振控制方法研究[J];振動與沖擊;2015年07期
6 王磊;譚平;趙卿卿;;隨機(jī)結(jié)構(gòu)-TMD優(yōu)化設(shè)計與概率密度演化研究[J];振動工程學(xué)報;2015年02期
7 雷旭;牛華偉;陳政清;汪志昊;周帥;;大跨度鋼拱橋吊桿減振的新型電渦流TMD開發(fā)與應(yīng)用[J];中國公路學(xué)報;2015年04期
8 張s,
本文編號:1678590
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1678590.html
最近更新
教材專著