基于CFD技術(shù)的遠射程消防水炮性能優(yōu)化
本文選題:消防水炮 切入點:數(shù)值模擬 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:為提高遠射程消防水炮的射程,本文對水炮的內(nèi)流場、外流場及后坐力這三部分進行分析。對內(nèi)部結(jié)構(gòu)進行優(yōu)化,尤其是對整流器、彎管及噴嘴結(jié)構(gòu)的優(yōu)化,以減小內(nèi)部流動損失,改善內(nèi)流場流動狀態(tài),提高射流的集束性,使水炮達到最遠射程。本文主要研究內(nèi)容如下:(1)通過對原水炮模型進行仿真模擬,發(fā)現(xiàn)水炮噴嘴來流紊亂,有切向和軸向速度分量,造成噴嘴射流水柱過早破碎,需要對水炮關(guān)鍵結(jié)構(gòu)進行整流及優(yōu)化。首先對噴嘴收縮角及具有微整流作用的噴嘴出口圓柱段,進行結(jié)構(gòu)設(shè)計及流場分析,確定出噴嘴最佳收縮角及噴嘴出口圓柱段長度。(2)結(jié)合正交試驗與流場數(shù)值計算的方法,對U型管的直管進行研究,結(jié)合水炮工作的平衡性及結(jié)構(gòu)的緊湊性,確定直管的最佳長度。為了確定彎管導(dǎo)流片的安放位置及數(shù)量,對180°彎管做了詳細分析,確定彎管造成的速度偏移,并找出偏移量與水炮仰角的關(guān)系,最終得到獲得良好彎管流動的最佳導(dǎo)流片安放位置為彎管內(nèi)壁面附近。(3)為獲得較好的噴嘴來流,在直管段內(nèi)安放整流器。本文重點研究了整流器截面形狀、整流器進出口處理方式、整流器長度對內(nèi)流場的影響,以壓力損失、出口速度分布、出口湍動能及出口軸線速度為考核標準。得到整流器分割流道數(shù)量越多,整流效果越好,越有利于提高射程?紤]到普通整流器的肋片為直板結(jié)構(gòu),會產(chǎn)生較大的沖擊損失,因此本文設(shè)計了含有螺旋形肋片的雙層圓管整流器及正六邊形流道的螺旋蜂窩整流器。從流線圖、壓力損失及與普通整流器的對比得出,當安放角等于液流角時,整流器損失及水炮進出口壓力損失最小,能量損失少。與普通整流器相比,螺旋蜂窩整流器在螺旋流道的引流下,部分切向和徑向速度能轉(zhuǎn)化為軸向速度,獲得較大的出口平均速度。同時采用實驗和模擬相結(jié)合的方法研究了三種不同螺距變化方式對整流器性能的影響。安裝螺旋形整流器后,整流器損失及水炮總壓損失比普通整流器的小,整流效果較好,整流器壓損少,可有效提高射程,為整流器的設(shè)計提供技術(shù)參考。(4)最后又對水炮外流場進行分析,通過算例驗證了模擬方法的可靠性。從內(nèi)流場的分析,得到最佳水炮結(jié)構(gòu)。并分析了仰角及噴嘴出口速度分布對射流的影響,得出對射流有利的噴嘴出口速度分布規(guī)律。在此基礎(chǔ)上,對水炮的后坐力做了流固耦合分析,證明本文設(shè)計的水炮結(jié)構(gòu)滿足實際工作的受力要求。
[Abstract]:In order to improve the range of the long range fire water gun, this paper analyzes the internal flow field, the outflow field and the recoil force of the water gun, and optimizes the internal structure, especially the structure of rectifier, elbow and nozzle. In order to reduce the internal flow loss, improve the flow state of the internal flow field, improve the concentration of the jet, and make the water gun reach the farthest range. The main research contents of this paper are as follows: 1) through the simulation of the original water gun model, it is found that the nozzle flow of the water gun is disordered. Due to the tangential and axial velocity components, the nozzle jet water column is broken prematurely, so the key structure of the water gun needs to be rectified and optimized. Firstly, the nozzle shrinkage angle and the nozzle outlet cylinder with micro-rectifying action are studied. Through structural design and flow field analysis, the optimum shrinkage angle of the nozzle and the length of the cylinder section at the nozzle outlet are determined. Combining with the orthogonal test and the numerical calculation method of the flow field, the straight tube of the U-shaped tube is studied. Combined with the balance and compact structure of the water gun, the optimum length of the straight pipe is determined. In order to determine the position and quantity of the deflector, the 180 擄bend is analyzed in detail, and the velocity offset caused by the bend is determined. The relationship between offset and elevation angle of water gun is found out. Finally, the best position of the guide piece for obtaining good flow of bends is near the inner surface of the bend pipe. In this paper, the effect of rectifier section shape, rectifier inlet and outlet treatment mode and rectifier length on the internal flow field is studied. The higher the number of separated channels, the better the rectifier effect is and the better the range is. Considering that the ribbed plate of the ordinary rectifier is a straight plate structure, the larger the impact loss will be. Therefore, a double-layer circular tube rectifier with helical ribs and a helical honeycomb rectifier with hexagonal flow channel are designed in this paper. From the streamline diagram, pressure loss and comparison with the ordinary rectifier, it is concluded that when the angle of placement is equal to the liquid flow angle, The loss of rectifier and the pressure loss of water gun inlet and outlet are minimum and the energy loss is less. Compared with the conventional rectifier, the partial tangential and radial velocity of the spiral honeycomb rectifier can be converted to axial velocity under the drainage of the spiral channel. At the same time, the effects of three different pitch variations on the performance of the rectifier are studied by the combination of experiment and simulation. The rectifier loss and the total pressure loss of water gun are smaller than those of the ordinary rectifier, the rectifier has better rectifying effect and the voltage loss of the rectifier is less, which can effectively improve the range, and provide a technical reference for the design of the rectifier. Finally, the flow field of the water gun is analyzed. An example is given to verify the reliability of the simulation method. From the analysis of the internal flow field, the optimum structure of the water gun is obtained, and the influence of elevation angle and velocity distribution of the nozzle outlet on the jet flow is analyzed. On the basis of this, the fluid-solid coupling analysis of the recoil force of the water gun is made, which proves that the structure of the water gun designed in this paper can meet the requirements of the actual work.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU998.1
【參考文獻】
相關(guān)期刊論文 前10條
1 胡國良;劉世鴻;李剛;徐明;;消防水炮穩(wěn)流器結(jié)構(gòu)對射流特性的影響分析[J];液壓與氣動;2015年07期
2 向清江;施哲夫;李紅;陳超;;遠射程消防水炮流道內(nèi)3種穩(wěn)流器的對比[J];排灌機械工程學(xué)報;2015年03期
3 邵大財;張志榜;張世鳳;;消防炮主要結(jié)構(gòu)簡析與主要設(shè)計參數(shù)計算[J];機械制造與自動化;2013年03期
4 胡國良;龍銘;高志剛;;消防水炮噴嘴射流特性分析[J];液壓與氣動;2012年07期
5 衣正堯;王興如;劉富強;孫玲;;純水射流沖擊性能的CFD建模與仿真分析[J];液壓氣動與密封;2012年01期
6 呂華;雷玉勇;楊振;鄒虎;杜文正;;噴嘴內(nèi)輪廓形狀對水射流動態(tài)特性影響研究[J];煤礦機械;2011年06期
7 劉力濤;馬振明;;消防水炮噴嘴噴射性能影響因素分析[J];能源研究與信息;2011年02期
8 龐生敏;陳沛民;;基于CFD的圓柱形噴嘴設(shè)計[J];機械制造與自動化;2011年01期
9 胡國良;陳偉剛;;PS100型固定式消防水炮水力學(xué)性能研究[J];機械設(shè)計與制造;2010年11期
10 胡國良;梁炬星;;可折疊移動式消防水炮的數(shù)值模擬與實驗分析[J];液壓與氣動;2010年04期
相關(guān)碩士學(xué)位論文 前4條
1 琚學(xué)振;消防炮射流關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2012年
2 謝志超;基于CFD的消防水炮水力性能研究[D];哈爾濱工程大學(xué);2012年
3 俞毓敏;大射程水炮設(shè)計及研究[D];南京理工大學(xué);2011年
4 孫健;消防炮射流軌跡的研究[D];上海交通大學(xué);2008年
,本文編號:1616782
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1616782.html