基于復(fù)合熱源的熱泵節(jié)能改造研究
本文選題:TRNSYS 切入點(diǎn):噴淋式無霜空氣源熱泵 出處:《北方工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本文以連云港市某能源中心建筑物為研究對(duì)象,首先對(duì)該能源中心空氣源熱泵的性能進(jìn)行測(cè)試,發(fā)現(xiàn)由于冬季蒸發(fā)器表面存在結(jié)霜問題,制熱效果不好。然后分別對(duì)連云港當(dāng)?shù)貧夂驐l件對(duì)熱泵結(jié)霜的影響、建筑物及其能耗概況、冷熱電負(fù)荷與可用能源、現(xiàn)有可用設(shè)備進(jìn)行分析,發(fā)現(xiàn)在冬季,該中心的空氣源熱泵機(jī)組能耗及維護(hù)費(fèi)用均偏高;趯(duì)熱泵存在的問題與中心可用能源設(shè)備研究,本文對(duì)現(xiàn)行的空氣源熱泵逐步提出了三個(gè)改造方案,并通過TRNSYS軟件進(jìn)行了熱泵全年運(yùn)行情況的性能與能耗模擬。方案一為解決熱泵冬季結(jié)霜問題,通過在空氣源熱泵翅片管換熱器上增加噴淋裝置,并以建筑附近湖水為水源,在冬季結(jié)霜工況對(duì)翅片管換熱器進(jìn)行連續(xù)噴淋,以達(dá)到防霜除霜的目的。針對(duì)湖水腐蝕性提出了三種可延緩湖水對(duì)翅片腐蝕的方法,并結(jié)合空氣源熱泵實(shí)際情況逐一進(jìn)行分析。結(jié)果表明,生成絡(luò)合物膜的緩蝕劑法8或犧牲鎂陽極的陰極保護(hù)法較適用于解決本方案存在的問題。該方案的TRNSYS供暖季無霜狀態(tài)模擬結(jié)果表明,熱泵全年能耗為806330kW·h,全年平均COP可達(dá)3.22。方案二為了進(jìn)一步降低熱泵能耗,并充分利用建筑物附近的湖水能,通過為現(xiàn)行的空氣源熱泵并聯(lián)一個(gè)輔助蒸發(fā)器將其改造為水源熱泵,并以建筑附近湖水為水源。該方案的TRNSYS模擬表明由于供暖季前期湖水平均水溫較低,在供暖前期湖水源熱泵能耗高于無霜空氣源熱泵,但夏季能耗較低。熱泵全年能耗為713761kW·h,全年平均COP可達(dá)3.58。方案三為解決供暖季前期湖水源熱泵由于性能衰減造成的能耗偏高問題,利用能源中心可鋪設(shè)太陽能集熱器面積500m2的條件,增加太陽能熱水系統(tǒng)輔助湖水源熱泵供熱,并設(shè)計(jì)了相應(yīng)的運(yùn)行模式。該方案的TRNSYS模擬結(jié)果表明,雖然鋪設(shè)500m2太陽能集熱器冬季所提供熱量遠(yuǎn)低于湖水源熱泵,但節(jié)能效果優(yōu)異。太陽能輔助湖水源熱泵供熱后,熱泵全年能耗為642500.3kW·h,全年平均COP 可達(dá) 3.69。最后,本文對(duì)于空氣源熱泵改造后在連云港全年運(yùn)行的特點(diǎn)進(jìn)行了分析,對(duì)于傳統(tǒng)空氣源熱泵空調(diào)提出了較合理的改進(jìn)意見。分析表明,三種改造方案都達(dá)到了節(jié)能的目的,以全年運(yùn)行能耗為比較基準(zhǔn),方案三的太陽能輔助湖水源熱泵最好,其次為方案二的湖水源熱泵,方案一的無霜空氣源熱泵最差。本文的研究結(jié)果可為提高與連云港氣候類似的地區(qū)的建筑空調(diào)節(jié)能水平提供參考性解決方案。
[Abstract]:In this paper, an energy center building in Lianyungang City is taken as the research object. Firstly, the performance of the energy center air-source heat pump is tested, and it is found that there is frost on the surface of the evaporator in winter. The influence of local climate conditions on heat pump frosting, the general situation of buildings and their energy consumption, the cold, thermal and electric load and available energy, the available equipments are analyzed, and it is found that in winter, The energy consumption and maintenance cost of the air source heat pump unit in the center are on the high side. Based on the problems existing in the heat pump and the research on the energy equipment available to the center, this paper puts forward three revamping schemes for the existing air source heat pump. The performance and energy consumption of the heat pump are simulated by TRNSYS software. Scheme one is to solve the problem of winter frosting of heat pump, by adding spray device to the finned tube heat exchanger of air source heat pump, and taking the lake water near the building as the water source. The finned tube heat exchanger was continuously sprayed in winter frosting condition to prevent frosting and defrosting. In view of the corrosion of lake water, three methods were put forward to delay the corrosion of fin by lake water. Combined with the actual situation of air-source heat pump, the results show that, The corrosion inhibitor method 8 or the cathodic protection method of sacrificial magnesium anode for the formation of complex membrane are more suitable to solve the problems existing in this scheme. The simulation results of frost-free state in TRNSYS heating season of this scheme show that, The annual energy consumption of the heat pump is 806330kW 路h, and the annual average COP can reach 3.22.The second scheme is to further reduce the energy consumption of the heat pump and make full use of the lake water energy near the building to transform it into a water source heat pump by connecting an auxiliary evaporator for the existing air source heat pump. The TRNSYS simulation shows that the energy consumption of the water source heat pump is higher than that of the frost-free air source heat pump in the early heating season because the average water temperature of the lake water is lower than that of the frost-free air source heat pump. But the energy consumption in summer is low. The annual energy consumption of heat pump is 713761 kW 路h and the average annual COP can reach 3.58.The third scheme is to solve the problem of high energy consumption caused by the performance attenuation of lake water source heat pump in the early heating season. Using the condition that the solar collector area can be laid in the energy center of 500m2, the solar water heating system is added to assist the heat supply of the lake water source heat pump, and the corresponding operation mode is designed. The TRNSYS simulation results of the scheme show that, Although the heat supply of 500m2 solar collector is much lower than that of lake water source heat pump in winter, the energy saving effect is excellent. After solar energy supply, the annual energy consumption of heat pump is 642500.3kW 路h, and the average annual COP is 3.69. finally, This paper analyzes the characteristics of air source heat pump operation in Lianyungang after revamping, and puts forward more reasonable suggestions for the improvement of traditional air source heat pump air conditioning. The analysis shows that the three retrofit schemes have achieved the purpose of saving energy. Based on the annual operating energy consumption, the solar-assisted lake water source heat pump is the best in the third scheme, followed by the lake water source heat pump in the second scheme. The results of this paper can provide a reference solution for improving the energy saving level of building air conditioning in areas similar to Lianyungang climate.
【學(xué)位授予單位】:北方工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU83
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊少鵬;喬春珍;趙玉清;;減緩湖水對(duì)風(fēng)冷熱泵翅片管換熱器腐蝕性的研究[J];全面腐蝕控制;2016年11期
2 吳宏偉;趙永;吳偉偉;;基于TRNSYS的某辦公建筑負(fù)荷計(jì)算示例分析[J];山西建筑;2015年12期
3 衣健光;楊國(guó)榮;;建筑區(qū)域供能系統(tǒng)的冷熱源選擇[J];暖通空調(diào);2013年09期
4 付慧影;姜益強(qiáng);姚楊;高強(qiáng);;噴淋溶液對(duì)無霜空氣源熱泵系統(tǒng)特性的影響[J];化工學(xué)報(bào);2012年S2期
5 陳曉;林漢柱;林宣軍;李明;;小型湖泊應(yīng)用于地表水源熱泵時(shí)的熱承載能力分析[J];水利學(xué)報(bào);2011年08期
6 于清章;吳霽虹;郭積鋮;;高氯化聚乙烯防腐涂料在防腐領(lǐng)域中的應(yīng)用[J];涂料工業(yè);2010年08期
7 徐兆穎;;湖水源熱泵的應(yīng)用分析[J];中小企業(yè)管理與科技(上旬刊);2010年01期
8 朱忠偉;吳一平;葛紅花;;變電站接地網(wǎng)腐蝕與防護(hù)研究進(jìn)展[J];上海電力學(xué)院學(xué)報(bào);2009年06期
9 馬學(xué)虎;汪明哲;蘭忠;王四芳;李曉楠;;表面納米結(jié)構(gòu)及其自由能對(duì)滴狀冷凝傳熱的影響[J];工程熱物理學(xué)報(bào);2009年10期
10 申江;李園園;;低環(huán)溫空氣源熱泵系統(tǒng)的試驗(yàn)研究[J];工程熱物理學(xué)報(bào);2008年06期
相關(guān)會(huì)議論文 前1條
1 何濤;;地表水水源熱泵系統(tǒng)應(yīng)用實(shí)例分析[A];全國(guó)暖通空調(diào)制冷2004年學(xué)術(shù)年會(huì)資料摘要集(2)[C];2004年
相關(guān)博士學(xué)位論文 前1條
1 劉寅;太陽能—空氣復(fù)合熱源熱泵系統(tǒng)性能研究[D];西安建筑科技大學(xué);2010年
相關(guān)碩士學(xué)位論文 前9條
1 劉祥哲;太陽能熱泵采暖系統(tǒng)的理論分析與設(shè)計(jì)研究[D];華北電力大學(xué);2013年
2 高強(qiáng);無霜空氣源熱泵系統(tǒng)的實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2011年
3 蒙建東;小型水體最大供冷能力的計(jì)算分析[D];哈爾濱工業(yè)大學(xué);2008年
4 胥曉e,
本文編號(hào):1595905
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1595905.html