基于子模型的蜂窩梁孔間腹板受剪屈曲承載力計算方法
本文關(guān)鍵詞: 蜂窩梁 孔間腹板 剪切屈曲 剪切屈曲系數(shù) 設計計算公式 出處:《山東大學》2017年碩士論文 論文類型:學位論文
【摘要】:蜂窩梁由H型或I型鋼梁在腹板沿一定曲折線進行切割并錯位拼接、焊接而成。根據(jù)切割方式的不同,可以制作出六邊形、八邊形、圓形和其他異型孔蜂窩梁。相比原型實腹鋼梁,蜂窩梁在不增加用鋼量的情況下具有更高的剛度,同時腹板孔洞的存在可以讓建筑設備從蜂窩梁中穿過,有效降低建筑層高。由于腹板孔洞的存在,蜂窩梁會發(fā)生孔間腹板屈曲等新的破壞形式,本文提出了六邊形孔蜂窩梁在彈性階段和彈塑性階段的剪切屈曲系數(shù)的實用計算公式,簡化了蜂窩梁孔間腹板剪切屈曲承載力的計算。本文通過有限元分析方法研究豎向荷載下六邊形孔蜂窩梁的孔間腹板屈曲性能。將蜂窩梁上T形腹板作為楔形隔離體對待,將蜂窩梁孔間腹板屈曲問題簡化為板件受水平剪力作用失穩(wěn)的問題。借用薄板剪切屈曲承載力計算公式,按照蜂窩梁孔間腹板的尺寸特點對公式進行修正,得到六邊形孔蜂窩梁孔間腹板剪切屈曲承載力計算公式。將楔形隔離體作為有限元子模型代替整體模型進行分析,通過對子模型邊界條件的調(diào)整使得子模型在受力性能上能夠與整體模型吻合。通過對孔間腹板寬度與腹板厚之比e/tw,孔高與腹板厚之比h0/tw,孔洞上方T形腹板高度與腹板厚之比hf/tw,腹板厚tw以及六邊形孔洞的邊傾角α等五個參數(shù)的分析,探究了其對剪切屈曲承載力和剪切屈曲系數(shù)的影響。在大量參數(shù)分析的前提下,分別擬合出了彈性階段以及彈塑性階段的剪切屈曲系數(shù)的計算公式,進而得到了六邊形孔蜂窩梁豎向孔間腹板屈曲承載力的計算公式。彈性階段承載力的計算公式與有限元結(jié)果吻合較好,由于實驗試件大多發(fā)生彈塑性屈曲破壞,因此彈性階段公式計算值相對實驗結(jié)果較高,引入安全系數(shù)后公式計算值精度提高。彈塑性階段的屈曲承載力計算公式與有限元分析結(jié)果和實驗結(jié)果吻合較好,將彈塑性階段承載力的計算公式與歐洲規(guī)范值對比,揭示了歐洲規(guī)范使用"斜壓柱"模型計算蜂窩梁孔間腹板屈曲承載力的局限性。
[Abstract]:The beehive beam is made of H-shaped or I-shaped steel beams cut along certain twists and turns on the web and welded. According to the different cutting methods, hexagonal and octagonal shapes can be made. Circular and other special-shaped beehive beams. Beehive beams have higher stiffness without increasing the amount of steel used, compared to prototype full-web steel beams, and web holes exist that allow construction equipment to pass through the beehive beams. Due to the existence of web holes, new failure forms such as web buckling between holes will occur in honeycomb beams. In this paper, a practical formula for calculating shear buckling coefficients of hexagonal honeycomb beams in elastic and elastic-plastic stages is presented. The calculation of shear buckling capacity of web between honeycomb beams is simplified. In this paper, the buckling behavior of interhole web of hexagonal honeycomb beams under vertical load is studied by finite element method. The T-shaped webs on honeycomb beams are treated as wedge-shaped isolators. In this paper, the problem of web buckling between honeycomb beams is simplified as the instability of plates subjected to horizontal shear force. The formula is modified according to the size characteristics of web between honeycomb beams by using the formula of shear buckling capacity of thin plate. A formula for calculating the shear buckling capacity of web between honeycomb beams with hexagonal holes is obtained. The wedge isolator is used as the finite element submodel instead of the integral model to be analyzed. By adjusting the boundary conditions of the sub-model, the sub-model can fit the overall model in terms of mechanical performance. By comparing the ratio of the width of the web between holes to the thickness of the web, the ratio of the height of the hole to the thickness of the web, the ratio of the height of the hole to the thickness of the web, the height of the T-shaped web above the hole and the thickness of the web are compared. The analysis of five parameters, such as the ratio of web thickness to thickness, the thickness of web, tw, and the edge dip angle of hexagonal hole, In this paper, the influence of shear buckling capacity and shear buckling coefficient on shear buckling capacity and shear buckling coefficient is investigated. On the premise of analyzing a large number of parameters, the formulas for calculating shear buckling coefficient in elastic stage and elastic-plastic stage are fitted, respectively. Furthermore, a formula for calculating the buckling capacity of the web between vertical holes of hexagonal honeycomb beams is obtained. The calculation formula for the bearing capacity in the elastic stage is in good agreement with the finite element results, because the elastoplastic buckling failure occurs in most of the experimental specimens. Therefore, the calculated value of the elastic stage formula is higher than that of the experimental one, and the precision of the formula is improved by introducing the safety factor. The calculation formula of the buckling capacity in the elastic-plastic stage is in good agreement with the results of the finite element analysis and the experimental results. By comparing the calculation formula of elastic-plastic stage bearing capacity with the European Code, the limitations of the European Code for calculating the buckling capacity of web between honeycomb beams are revealed by using the "baroclinic column" model.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU391
【相似文獻】
相關(guān)期刊論文 前10條
1 尹芳;;基于ANSYS Workbench的結(jié)構(gòu)應力分析的子模型法[J];武漢輕工大學學報;2014年02期
2 張軼川;苗強;朱西產(chǎn);王大志;劉軍勇;;行人頭部碰撞子模型適用性的研究[J];汽車工程;2010年03期
3 王燕;;子模型方法在活門有限元分析中的應用[J];大電機技術(shù);2010年05期
4 周宇;萬朝燕;謝素明;;基于子模型的鐵路車輛結(jié)構(gòu)強度精細計算[J];鐵道機車車輛;2009年01期
5 劉正躍;;有限元分析中的子模型法[J];內(nèi)江科技;2012年03期
6 徐珊珊;劉世明;郭紹靜;張阿漫;;子模型方法在艦船設備連接結(jié)構(gòu)強度研究中的應用(英文)[J];Journal of Marine Science and Application;2009年04期
7 胡昌良;李龍超;李波;;基于子模型方法的曲軸強度分析[J];汽車工程師;2011年05期
8 孫澤世;王鋒;;ANSYS子模型技術(shù)在橋梁分析上的應用[J];山西建筑;2007年20期
9 徐伽南;何勇;崔磊;金偉良;;基于改進子模型技術(shù)的TLP平臺疲勞分析[J];船舶工程;2012年01期
10 高耀東,楊建鳴,汪建新;ANSYS子模型技術(shù)的應用[J];包頭鋼鐵學院學報;2002年04期
相關(guān)會議論文 前1條
1 楊慶山;李啟;;亞格子模型在鈍體繞流大渦模擬中的比較[A];第十四屆全國結(jié)構(gòu)風工程學術(shù)會議論文集(下冊)[C];2009年
相關(guān)博士學位論文 前1條
1 李應林;基于旋流強度的亞格子模型及其在不可壓流動大渦模擬中的應用[D];中國科學技術(shù)大學;2015年
相關(guān)碩士學位論文 前2條
1 郭康瑞;基于子模型的蜂窩梁孔間腹板受剪屈曲承載力計算方法[D];山東大學;2017年
2 周宇;基于子模型的鐵路車輛結(jié)構(gòu)強度精細計算[D];大連交通大學;2008年
,本文編號:1525646
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1525646.html