抗滑樁—拱形系板—擋土墻組合結(jié)構(gòu)治理滑坡計(jì)算方法研究
本文關(guān)鍵詞:抗滑樁—拱形系板—擋土墻組合結(jié)構(gòu)治理滑坡計(jì)算方法研究 出處:《西南交通大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 抗滑樁-拱形系板-擋土墻結(jié)構(gòu)體系 計(jì)算方法 滑坡治理 FLAC3D數(shù)值模擬
【摘要】:本文依托馬家坡滑坡提出了一種適用于"V"字形溝谷地帶中小型滑坡治理的新型抗滑體系—抗滑樁-拱形系板-擋土墻組合結(jié)構(gòu),即抗滑樁、擋土墻通過(guò)拱形系板連接而成的聯(lián)合支擋結(jié)構(gòu)。采用理論分析和數(shù)值模擬相結(jié)合的方法,對(duì)該結(jié)構(gòu)體系受力機(jī)理、受力特點(diǎn)、內(nèi)力計(jì)算方法進(jìn)行了研究。(1)依據(jù)現(xiàn)有的拱、抗滑樁、擋土墻以及結(jié)構(gòu)力學(xué)的相關(guān)理論,結(jié)合"V"字形溝谷地帶滑坡的特點(diǎn),確定結(jié)構(gòu)體系中拱形系板拱軸線為懸鏈線,擋土墻采用重力式擋土墻,抗滑樁為普通樁。抗滑樁與拱形系板、擋土墻與拱形系板均采用固定鉸支座進(jìn)行連接,該支擋結(jié)構(gòu)沿滑坡前緣順河道縱向布置。(2)抗滑樁-拱形系板-擋土墻結(jié)構(gòu)體系為一次超靜定結(jié)構(gòu),本文在研究過(guò)程中,滑坡推力計(jì)算采用傳遞系數(shù)法,拱板內(nèi)力計(jì)算采用近似的懸鏈線雙鉸拱模型,抗滑樁內(nèi)力采用懸臂法和地基系數(shù)法,重力式擋土墻內(nèi)力利用靜力平衡條件得出。結(jié)合結(jié)構(gòu)力學(xué)以及材料力學(xué)知識(shí)對(duì)不同地質(zhì)情況下整個(gè)結(jié)構(gòu)體系中拱形系板、抗滑樁、擋土墻等的內(nèi)力計(jì)算公式進(jìn)行了推導(dǎo),采用迭代法對(duì)體系中各構(gòu)件連接處位移進(jìn)行修正。得出了一套完整的抗滑樁-拱形系板-擋土墻組合結(jié)構(gòu)內(nèi)力計(jì)算公式以及穩(wěn)定性驗(yàn)算公式。(3)采用馬家坡滑坡工程地質(zhì)模型對(duì)所推導(dǎo)出的理論公式進(jìn)行驗(yàn)算,結(jié)合實(shí)地勘察資料,對(duì)滑坡的地形地貌和工程地質(zhì)條件進(jìn)行分析,采用工程地質(zhì)類比法和室內(nèi)試驗(yàn)確定巖土體物理力學(xué)參數(shù),并采用傳遞系數(shù)法對(duì)3個(gè)剖面不同剪出口的穩(wěn)定性系數(shù)和剩余下滑力進(jìn)行計(jì)算;垄-Ⅱ斷面為主斷面,暴雨工況下易從坡腳處剪出,穩(wěn)定性系數(shù)為0.979,處于不穩(wěn)定狀態(tài),亟待治理。(4)根據(jù)實(shí)際工程地質(zhì)條件及地形地貌,抗滑樁-拱形系板-擋土墻組合結(jié)構(gòu)在治理馬家坡滑坡時(shí)各結(jié)構(gòu)尺寸分別為:拱板厚度0.8m,跨度3.0m,矢高0.5m;抗滑樁截面尺寸為2.5m×3.0m,樁長(zhǎng)7m,滑面以上3m,滑面以下4m;擋土墻高4.5m,頂面寬度1.5m,底面寬度3.0m。采用所推導(dǎo)理論公式對(duì)組合結(jié)構(gòu)所受內(nèi)力進(jìn)行計(jì)算,并知樁頂最大位移為0.023m,并對(duì)體系穩(wěn)定性進(jìn)行驗(yàn)算,結(jié)果符合相關(guān)規(guī)定。(5)利用GID軟件和FLAC3D數(shù)值模擬軟件,建立馬家坡滑坡Ⅱ-Ⅱ斷面以及滑坡整體三維數(shù)值模型,模擬自然狀態(tài)和暴雨兩種常見(jiàn)工況,分析了滑坡的穩(wěn)定性。Ⅱ-Ⅱ剖面在自然和暴雨工況下安全性系數(shù)為1.06、0.95,滑坡整體在自然和暴雨工況下安全性系數(shù)為1.08、0.98,滑坡在暴雨工況下處于不穩(wěn)定狀態(tài)。(6)對(duì)采用抗滑樁-拱形系板-擋土墻組合結(jié)構(gòu)治理后的馬家坡滑坡Ⅱ-Ⅱ斷面在暴雨工況下穩(wěn)定性及組合結(jié)構(gòu)內(nèi)力進(jìn)行數(shù)值模擬分析。治理后滑坡穩(wěn)定,且組合結(jié)構(gòu)內(nèi)力分布形式與理論計(jì)算得出的內(nèi)力分布形式一致,證明所推導(dǎo)的理論公式科學(xué)合理。
[Abstract]:On the basis of magupo landslide is proposed for a "V" shaped valley areas in small landslide of new anti slip system and anti slide pile - arched plate retaining wall structure, namely, anti slide pile, retaining walls connected by arched plate and the combined retaining structure by using the method of theory. Analysis and numerical simulation, the structural stress mechanism, stress characteristics, internal force calculation method is studied. (1) on the basis of the existing arch anti slide pile, retaining wall and structural mechanics theory, combined with the "V" shaped Valley landslide characteristics, determine the arch structure in the plate arch axis is catenary, retaining wall with gravity retaining walls, anti slide pile for common pile. Anti slide pile with arched plate, retaining wall and arch plate adopts fixed hinge bearing to connect the retaining structure along the longitudinal direction along the front edge of the landslide anti slide pile (2). Arch Shaped plate retaining wall structure system is a statically indeterminate structure, in the process of research, transfer coefficient method to calculate the landslide thrust calculation using the approximate model of catenary arch arch cantilever method and internal force of anti slide pile internal force of foundation coefficient method, gravity retaining wall internal force by using the static balance the conditions obtained. Combining with structural mechanics and material mechanics knowledge of arch in different geologic condition of the whole structure of system board, anti slide pile, retaining wall and the internal force calculation formulas were deduced, the various components of the system of joint displacement is corrected by iterative method. Obtained a complete set of anti slide pile arch plate - retaining wall internal force calculation formula and stability calculation formula. (3) the geological model of magupo landslide engineering theory formula derived by checking, combined with field survey data, on the slippery slope of the terrain Analysis of landform and geological conditions, the engineering geological analogy method and laboratory test to determine the physical and mechanical parameters of rock and soil, and the coefficient of stability in 3 sections in different shearing transfer coefficient method and residual sliding force are calculated. The landslide II - II sections of the main section, the storm conditions easily cut out from the foot of the slope, stability the coefficient is 0.979, in an unstable state, urgent treatment. (4) according to the actual geological conditions and topography, anti slide pile - arched plate retaining wall composite structure in magupo landslide governance structure dimensions respectively: arch plate thickness 0.8m, span 3.0m, height 0.5m; anti slide pile the size of 2.5m * 3.0m, the length of pile above the sliding surface 7m, 3M, 4m under sliding surface; the top surface of the retaining wall height 4.5m, width 1.5m, bottom width 3.0m. of the theoretical formula of composite structure internal force calculation, and the maximum displacement of the pile head is 0 .023m, and checking the stability of the system, the results comply with the relevant regulations. (5) numerical simulation using GID software and FLAC3D software, establish magupo II II landslide section and 3D numerical simulation of landslide model, natural state and heavy rain of two common conditions, the stability of landslide is analyzed in Section II. II - natural and stormconditions safety coefficient is 1.06,0.95, the whole landslide in the natural and stormconditions safety coefficient is 1.08,0.98, the landslide is in unstable state in heavy rain conditions. (6) of the anti slide pile - arched plate retaining wall combined structure of governance after magupo landslide stability and section II - II the combination of structural internal force under heavy rain conditions. The numerical simulation analysis of landslide stability, uniform distribution and form of internal force combination structure of the internal force distribution and theoretical calculation, the derived formula of theoretical proof and Science Daniel.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P642.22;TU753.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李興田;張麗萍;;基于GiD的鋼桁梁橋有限元建模研究[J];蘭州交通大學(xué)學(xué)報(bào);2016年06期
2 劉傳正;;深圳紅坳棄土場(chǎng)滑坡災(zāi)難成因分析[J];中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào);2016年01期
3 桑凱;;近60年中國(guó)滑坡災(zāi)害數(shù)據(jù)統(tǒng)計(jì)與分析[J];科技傳播;2013年10期
4 殷躍平;劉傳正;陳紅旗;任堅(jiān);祝傳兵;;2013年1月11日云南鎮(zhèn)雄趙家溝特大滑坡災(zāi)害研究[J];工程地質(zhì)學(xué)報(bào);2013年01期
5 吳明;彭建兵;徐平;孫苗苗;夏唐代;;考慮土拱效應(yīng)的擋墻后土壓力研究[J];工程力學(xué);2011年11期
6 鐘志輝;劉祚秋;楊光華;張玉成;;基于Midas/GTS的FLAC3D邊坡建模技術(shù)及工程應(yīng)用[J];西北地震學(xué)報(bào);2011年S1期
7 湯井田;公勁U,
本文編號(hào):1411537
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1411537.html