基于升降溫全過程分析的SRC柱耐火性能指標(biāo)研究
本文關(guān)鍵詞:基于升降溫全過程分析的SRC柱耐火性能指標(biāo)研究 出處:《蘇州科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: SRC柱 耐火性能指標(biāo) 火災(zāi)作用全程 耐火極限
【摘要】:型鋼混凝土柱(以下簡稱SRC柱)具有承載力高,剛度大,抗震、抗火、耐腐蝕性能好和技術(shù)經(jīng)濟效益好等優(yōu)點,在多層、高層、超高層建筑以及工業(yè)廠房中得到廣泛的應(yīng)用。對SRC柱在高溫下的性能研究多集中在標(biāo)準(zhǔn)升溫條件下的耐火極限和火災(zāi)后剩余承載力的研究。但在實際火災(zāi)作用下,SRC柱會經(jīng)歷升溫和降溫兩個階段,由于混凝土的熱惰性,截面升溫存在滯后性,在降溫階段,外部混凝土開始降溫,但內(nèi)部型鋼和部分混凝土仍處于升溫狀態(tài),柱承載力繼續(xù)下降,故存在降溫段發(fā)生延遲破壞的可能性。為了解SRC柱在降溫段破壞的可能性,更準(zhǔn)確地評估SRC柱在實際火災(zāi)下的耐火能力,本文基于SRC柱的抗火全過程分析,對其抗火性能指標(biāo)DHP進行研究。主要工作如下:(1)利用有限元軟件ABAQUS建立了SRC柱三維溫度場計算模型和全過程力學(xué)計算模型,并利用已有試驗數(shù)據(jù)對其有效性與合理性進行了驗證。(2)定義場變量,編制可以自動識別和轉(zhuǎn)換材料本構(gòu)關(guān)系的子程序USDFLD,實現(xiàn)了對SRC柱升、降溫全過程的耐火性能計算。(3)驗證了SRC柱在降溫段發(fā)生破壞的可能。通過探究SRC柱在全過程火災(zāi)作用下承載力的變化,對比耐火極限,定義了衡量SRC柱在全過程火災(zāi)作用下的耐火性能指標(biāo)DHP,即可使SRC柱在降溫段發(fā)生破壞的最小升溫時間(Duration of the Heating Phase)。(4)對影響SRC柱耐火極限及全過程火災(zāi)作用下的耐火性能指標(biāo)(DHP)的主要參數(shù)進行計算分析,包括火災(zāi)荷載比、SRC柱截面尺寸、長細比、偏心率、型鋼截面尺寸、混凝土強度。對比分析可知,荷載比、柱截面尺寸、長細比對SRC柱在升降溫全程火災(zāi)作用下的耐火性能影響較大。(5)在以上模型計算的基礎(chǔ)上,通過回歸分析建立了SRC柱耐火極限R和全過程火災(zāi)下耐火性能指標(biāo)DHP的簡化計算公式,并建立了DHP關(guān)于R的函數(shù)關(guān)系式。
[Abstract]:SRC columns (hereinafter referred to as SRC columns) have the advantages of high bearing capacity, large stiffness, earthquake resistance, fire resistance, good corrosion resistance and good technical and economic benefits. The research on the performance of SRC columns at high temperature is mainly focused on the fire resistance limit and the residual bearing capacity after fire under the standard temperature rise condition. Use it. SRC columns will go through two stages of heating and cooling. Due to the thermal inertia of concrete, the section of the temperature rise has hysteresis, in the cooling stage, the external concrete began to cool down. However, the internal steel and some concrete are still in the state of heating up, and the bearing capacity of the columns continues to decrease, so there is the possibility of delayed failure in the cooling section. In order to understand the possibility of failure of the SRC column in the cooling section. In order to evaluate the fire resistance of SRC columns more accurately, this paper based on the analysis of the whole process of fire resistance of SRC columns. The main work is as follows: (1) the three-dimensional temperature field calculation model and the whole process mechanical calculation model of the SRC column are established by using the finite element software ABAQUS. The validity and reasonableness of the field variables are verified by the existing experimental data. The field variables are defined and a subprogram, USDFLD, which can automatically identify and transform the constitutive relations of materials is developed. The fire resistance calculation of the whole process of rising and cooling of SRC column is realized. The possibility of failure of SRC column in the cooling section is verified. The change of bearing capacity of SRC column under the action of fire during the whole process is explored by means of exploring the change of bearing capacity of SRC column in the whole process of fire. Compared with the fire resistance limit, the fire resistance index (DHP) of the SRC column is defined to measure the fire resistance of the column under the action of the whole process fire. The minimum heating time for the failure of the SRC column in the cooling stage is #number0#). The main parameters which affect the fire resistance limit of SRC column and the fire resistance index of SRC column under the action of fire during the whole process are calculated and analyzed. Including the fire load ratio SRC column section size, slenderness ratio, eccentricity, steel section size, concrete strength. The aspect ratio of SRC column has a great influence on the fire resistance of SRC column under the action of rising and cooling the whole fire. 5) on the basis of the above model calculation. By regression analysis, a simplified formula for calculating the fire resistance limit R of SRC column and the fire resistance index DHP under the whole process of fire is established, and the function relation of DHP about R is established.
【學(xué)位授予單位】:蘇州科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU398.9;TU352.5
【參考文獻】
相關(guān)期刊論文 前10條
1 王廣勇;張東明;鄭蟬蟬;張超;;考慮受火全過程的高溫作用后型鋼混凝土柱力學(xué)性能研究及有限元分析[J];建筑結(jié)構(gòu)學(xué)報;2016年03期
2 徐浩然;毛小勇;;三面受火約束T形截面SRC異形柱耐火性能研究[J];山東工業(yè)技術(shù);2015年13期
3 譚清華;韓林海;周侃;;火災(zāi)下型鋼混凝土柱的受力全過程分析[J];防災(zāi)減災(zāi)工程學(xué)報;2015年01期
4 鄭蟬蟬;李引擎;;型鋼混凝土柱耐火性能有限元分析方法[J];建筑科學(xué);2014年11期
5 周璇;毛小勇;;T形截面型鋼混凝土異形柱耐火極限研究[J];蘇州科技學(xué)院學(xué)報(工程技術(shù)版);2013年01期
6 高偉華;毛小勇;;三面受火型鋼混凝土柱耐火性能有限元分析[J];四川建筑科學(xué)研究;2012年02期
7 毛小勇;李麗麗;高偉華;徐悅軍;;三面受火小偏壓SRC柱耐火極限試驗[J];哈爾濱工程大學(xué)學(xué)報;2012年01期
8 杜二峰;毛小勇;舒贛平;;軸心受壓SRC柱受火全過程數(shù)值分析[J];消防科學(xué)與技術(shù);2011年06期
9 李俊華;劉明哲;唐躍鋒;鄭榮躍;;火災(zāi)后型鋼混凝土梁受力性能試驗研究[J];土木工程學(xué)報;2011年04期
10 毛小勇;高偉華;李麗麗;徐悅軍;;三面受火型鋼混凝土柱耐火極限試驗研究[J];自然災(zāi)害學(xué)報;2010年06期
相關(guān)碩士學(xué)位論文 前2條
1 侯進學(xué);大偏心荷載作用下型鋼混凝土(SRC)柱抗火全過程試驗研究與理論分析[D];蘇州科技學(xué)院;2010年
2 杜二峰;標(biāo)準(zhǔn)火災(zāi)下SRC柱全過程力學(xué)性能分析[D];蘇州科技學(xué)院;2009年
,本文編號:1398639
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1398639.html