高應(yīng)力隧洞巖爆傾向性預(yù)測(cè)與預(yù)防措施研究
本文關(guān)鍵詞:高應(yīng)力隧洞巖爆傾向性預(yù)測(cè)與預(yù)防措施研究 出處:《西安科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 高地應(yīng)力 巖爆 傾向性 支護(hù)措施 數(shù)值模擬
【摘要】:在深埋地下工程中,由于高地應(yīng)力和復(fù)雜的地質(zhì)條件,因而隧道和洞室開(kāi)挖都會(huì)發(fā)生巖爆的現(xiàn)象,破壞設(shè)備,影響施工進(jìn)度,甚至威脅施工人員安全。本論文結(jié)合某隧道的實(shí)際情況,以此為主要的工程背景,展開(kāi)對(duì)工程中的巖爆傾向性預(yù)測(cè)和防治措施研究。(1)本章根據(jù)某隧道的實(shí)際地質(zhì)情況,對(duì)全線十種狀態(tài)數(shù)值模擬研究。采用FLAC3D有限差分軟件,模擬了不同圍巖等級(jí)和埋深條件下隧道應(yīng)力變化,依選取Russense判據(jù)評(píng)價(jià)了某隧道全線的巖爆傾向性,得到結(jié)論:某隧道全線巖爆現(xiàn)象發(fā)生的區(qū)域。在各狀態(tài)下主壓應(yīng)力洞周切向應(yīng)力的最大值位置大體一致。這些峰值分布的位置,主要以起拱處偏上部位及隧道拱頂處為主。(2)模擬了巖石性質(zhì)參數(shù)中彈性模量、黏聚力和內(nèi)摩擦角對(duì)巖爆傾向性的敏感性,基于狀態(tài)九,得到結(jié)論:隨著彈性模量不斷的增大,而是先增大然后減小的過(guò)程;隨著黏聚力不斷的增大,巖爆是先增大后減小不斷反復(fù)循環(huán)的過(guò)程;隨著內(nèi)摩擦角在35°~45°之間,巖爆傾向性指標(biāo)以非常小的程度在不斷的增加,在50°達(dá)到峰值之后,開(kāi)始不斷減小的過(guò)程。(3)利用正交模擬實(shí)驗(yàn),對(duì)巖石性質(zhì)參數(shù)中彈性模量、黏聚力和內(nèi)摩擦角對(duì)巖爆傾向性的權(quán)重變化進(jìn)行了分析,得到結(jié)論:因素C(內(nèi)摩擦角)在水平3對(duì)巖爆傾向性指標(biāo)的影響最大,尤其是從水平2到水平4,巖爆傾向性指標(biāo)增加顯著;而因素A(彈性模量)對(duì)巖爆傾向性指標(biāo)的影響程度次之,因素B(黏聚力)增大變化對(duì)巖爆傾向性指標(biāo)的影響最小。(4)根據(jù)隧道的實(shí)際情況,結(jié)合預(yù)測(cè)和巖石性質(zhì)參數(shù)的分析,在可能發(fā)生強(qiáng)巖爆區(qū)和可能發(fā)生中等巖爆區(qū)提出具體的防治手段來(lái)確保隧道安全施工。
[Abstract]:Because of the high ground stress and complex geological conditions in the deep buried underground engineering, the rock burst will occur in the excavation of tunnels and caverns, which will destroy the equipment and affect the construction progress. Even threaten the safety of construction personnel. This paper combined with the actual situation of a tunnel, taking this as the main engineering background. In this chapter, according to the actual geological conditions of a tunnel, the numerical simulation of ten states of the whole line is studied. FLAC3D finite difference software is used. The variation of tunnel stress under different surrounding rock grade and buried depth is simulated, and the rockburst tendency of a tunnel is evaluated according to Russense criterion. It is concluded that the maximum position of the tangential stress around the main compressive stress hole is approximately the same in the region where the rockburst occurs in the whole line of a tunnel, and the location of these peak distributions. The sensitivity of elastic modulus, cohesion force and angle of internal friction to the tendency of rock burst in rock property parameters is simulated by the upper part of the arch and the arch of tunnel, based on state 9. The results show that the elastic modulus, the cohesion force and the angle of internal friction are sensitive to the tendency of rock burst. It is concluded that with the increasing of elastic modulus, the elastic modulus increases first and then decreases. With the increasing of cohesive force, rock burst is the process of increasing first and then decreasing repeatedly. With the internal friction angle between 35 擄and 45 擄, the rockburst tendency index increases continuously to a very small extent and reaches the peak value at 50 擄. By using orthogonal simulation experiment, the weight changes of elastic modulus, cohesion force and internal friction angle on rock burst tendency in rock property parameters are analyzed. It is concluded that the factor C (angle of internal friction) has the greatest influence on the rockburst tendency index at level 3, especially from level 2 to level 4, the rockburst tendency index increases significantly. The influence of factor A (elastic modulus) on the rockburst tendency index is the second, and the influence of factor B (cohesion) on the rockburst tendency index is the least. 4) according to the actual situation of the tunnel. Combined with prediction and analysis of rock property parameters, concrete prevention measures are put forward to ensure tunnel safe construction in areas where strong rockburst and moderate rockburst may occur.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于洋;;巖體隧洞巖爆過(guò)程微震特征及其擴(kuò)展機(jī)制[J];水利水運(yùn)工程學(xué)報(bào);2017年01期
2 鄧思文;陳恩瑜;馬池帥;譚賢君;;基于地應(yīng)力實(shí)測(cè)與能量判據(jù)的深埋隧道巖爆預(yù)測(cè)[J];人民長(zhǎng)江;2016年21期
3 錢(qián)七虎;;巖爆、沖擊地壓的定義、機(jī)制、分類及其定量預(yù)測(cè)模型[J];巖土力學(xué);2014年01期
4 蔡美峰;冀東;郭奇峰;;基于地應(yīng)力現(xiàn)場(chǎng)實(shí)測(cè)與開(kāi)采擾動(dòng)能量積聚理論的巖爆預(yù)測(cè)研究[J];巖石力學(xué)與工程學(xué)報(bào);2013年10期
5 張光存;高謙;杜聚強(qiáng);李鏗鏗;;基于人工神經(jīng)網(wǎng)絡(luò)及非線性回歸的巖爆判據(jù)[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年07期
6 張俊峰;;基于BP神經(jīng)網(wǎng)絡(luò)隧道施工巖爆預(yù)測(cè)研究[J];路基工程;2013年03期
7 賈義鵬;呂慶;尚岳全;;基于粒子群算法和廣義回歸神經(jīng)網(wǎng)絡(luò)的巖爆預(yù)測(cè)[J];巖石力學(xué)與工程學(xué)報(bào);2013年02期
8 明華軍;馮夏庭;陳炳瑞;張傳慶;;基于矩張量的深埋隧洞巖爆機(jī)制分析[J];巖土力學(xué);2013年01期
9 馮夏庭;陳炳瑞;明華軍;吳世勇;肖亞勛;豐光亮;周輝;邱士利;;深埋隧洞巖爆孕育規(guī)律與機(jī)制:即時(shí)型巖爆[J];巖石力學(xué)與工程學(xué)報(bào);2012年03期
10 汪洋;王繼敏;尹健民;王法剛;艾凱;;基于快速應(yīng)力釋放的深埋隧洞巖爆防治對(duì)策研究[J];巖土力學(xué);2012年02期
相關(guān)會(huì)議論文 前2條
1 何樹(shù)生;孫曉彤;陳吉;;圍壓對(duì)巖石能量積聚和耗散的影響[A];北京力學(xué)會(huì)第二十三屆學(xué)術(shù)年會(huì)會(huì)議論文集[C];2017年
2 譚以安;;模糊數(shù)學(xué)綜合評(píng)判在地下洞室?guī)r爆預(yù)測(cè)中的應(yīng)用[A];巖石力學(xué)在工程中的應(yīng)用——第二次全國(guó)巖石力學(xué)與工程學(xué)術(shù)會(huì)議論文集[C];1989年
,本文編號(hào):1392358
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1392358.html