天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 醫(yī)學(xué)論文 > 護(hù)理論文 >

睡眠腦電自動分期方法研究

發(fā)布時間:2019-02-24 10:56
【摘要】:對睡眠分期進(jìn)行研究有一定的臨床和現(xiàn)實意義,睡眠分期在睡眠質(zhì)量的評估和睡眠相關(guān)疾病的輔助治療中都有重要的作用。傳統(tǒng)的人工睡眠分期有它的局限性:效率低、耗時和耗費人力,因此研究自動睡眠分期具有重要的意義。腦電是分析睡眠最重要的一個生理信號,通過對睡眠腦電信號進(jìn)行一定的處理,提取能表征不同睡眠期的特征參數(shù),并借助分類器進(jìn)行睡眠分期。睡眠腦電是一種復(fù)雜的、時變的非線性非平穩(wěn)信號,本文通過結(jié)合非線性動力學(xué)方法樣本熵和時頻分析方法希爾伯特黃變換進(jìn)行睡眠特征的提取。通過計算出每個睡眠片段的邊際譜,并在此基礎(chǔ)上計算各腦電節(jié)律的能量比,并結(jié)合睡眠腦電樣本熵的特征,把所有這些睡眠特征作為分類器的輸入,并借助臺灣大學(xué)林智仁博士開發(fā)的Libsvm分類工具箱來進(jìn)行睡眠分期。本文所采用的實驗數(shù)據(jù)來源于MIT-BIT的PhysioBank中的Sleep-EDF數(shù)據(jù)庫,選擇了10個受試者的兩導(dǎo)腦電信號進(jìn)行睡眠分期的研究。本文主要把睡眠分為覺醒期、NREM 2期.NREM3期(深睡期)、NREM 1/REM(快速眼動期)這幾個睡眠期。實驗結(jié)果表明,通過樣本熵和希爾伯特黃變換能有效獲取睡眠腦電信號的睡眠特征。不同睡眠期的樣本熵值之間存著一定的規(guī)律性,在非快速眼動期(NREM),隨著睡眠的深入,樣本熵值不斷減小,在NREM 3、4期達(dá)到最小值。利用希爾伯特黃變換求得的腦電信號的邊際譜在不同睡眠期具有一定的差異性的,腦電節(jié)律的能量比能夠很好地表征不同的睡眠期。但是僅僅利用樣本熵進(jìn)行睡眠分期的效果一般,而只利用希爾伯特黃變換方法進(jìn)行睡眠特征的提取,達(dá)到的睡眠分期效果較好。通過結(jié)合樣本熵和希爾伯特黃變換進(jìn)行睡眠特征提取,睡眠分期的效果進(jìn)一步提高,比僅僅用其中一種方法的效果都要好,總體分期準(zhǔn)確率達(dá)到了89.9%。由此可見,通過結(jié)合樣本熵和希爾伯特黃變換方法作為特征提取的方法對睡眠進(jìn)行分期具有比較理想的效果,同時也肯定了用腦電信號進(jìn)行睡眠分期的可行性。
[Abstract]:The study of sleep staging has some clinical and practical significance. Sleep staging plays an important role in the evaluation of sleep quality and the adjuvant treatment of sleep related diseases. Traditional artificial sleep staging has its limitations: low efficiency, time consuming and labor consumption, so it is of great significance to study automatic sleep staging. EEG is the most important physiological signal to analyze sleep. By processing the sleep EEG, the characteristic parameters of different sleep periods can be extracted, and the sleep stages are carried out with the help of classifier. Sleep EEG is a kind of complex, time-varying nonlinear non-stationary signal. In this paper, the feature of sleep is extracted by combining the nonlinear dynamic method, sample entropy and time-frequency analysis method, Hilbert-Huang transform. By calculating the marginal spectrum of each sleep segment and calculating the energy ratio of each EEG rhythm, and combining with the entropy characteristics of the sleep EEG sample, all these sleep characteristics are used as the input of the classifier. And with the help of Libsvm classification toolbox developed by Dr. Lin Zhiren, University of Taiwan to stage sleep. The experimental data were obtained from the Sleep-EDF database in PhysioBank of MIT-BIT. Ten subjects were selected to study sleep stages with two conductance EEG signals. In this paper, sleep is divided into arousal, NREM 2 and NREM3 (deep sleep), NREM 1/REM). The experimental results show that the sleep characteristics of sleep EEG can be obtained effectively by sample entropy and Hilbert-Huang transform. There was a certain regularity between the entropy values of samples in different sleep periods. In the non-rapid eye movement period, the sample entropy value decreased with the deepening of sleep, and reached the minimum value in the NREM 3 / 4 phase. The marginal spectrum of EEG obtained by Hilbert-Huang transform is different in different sleep periods, and the energy ratio of EEG rhythm can well characterize different sleep periods. But the effect of only using sample entropy to stage sleep is general, but only using Hilbert-Huang transform to extract sleep features, the effect of sleep staging is better. By combining sample entropy and Hilbert-Huang transform to extract sleep features, the effect of sleep staging is further improved, which is better than that of only one of the methods, and the overall accuracy of stage is 89.9. It can be seen that the method of sample entropy and Hilbert-Huang transform is an ideal method for sleep staging, and the feasibility of using EEG for sleep staging is also confirmed.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:R740;TN911.7

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 葛丁飛;李小梅;;心電信號多周期融合特征提取和分類研究[J];中國生物醫(yī)學(xué)工程學(xué)報;2006年06期

2 張紹武;潘泉;趙春暉;程詠梅;;基于加權(quán)自相關(guān)函數(shù)特征提取法的多類蛋白質(zhì)同源寡聚體分類研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2007年04期

3 薛建中,鄭崇勛,閆相國;快速多變量自回歸模型的意識任務(wù)的特征提取與分類[J];西安交通大學(xué)學(xué)報;2003年08期

4 楊曉敏,羅立民;白細(xì)胞自動分類中的特征提取和分析[J];北京生物醫(yī)學(xué)工程;1992年04期

5 王雙維;樊曉平;廖志芳;;一種激光誘導(dǎo)熒光光譜特征提取新方法[J];計算機(jī)工程與應(yīng)用;2008年12期

6 杜軍平,涂序彥;計算機(jī)圖像處理技術(shù)在舌像特征提取中的應(yīng)用[J];中國醫(yī)學(xué)影像技術(shù);2003年S1期

7 游佳;陳卉;;數(shù)字圖像中血管的分割與特征提取[J];生物醫(yī)學(xué)工程與臨床;2011年01期

8 謝軼峰;;乳腺超聲圖像腫瘤特征提取與腫瘤分類[J];中外醫(yī)療;2013年16期

9 吳澤暉,吳星;醫(yī)學(xué)圖象的邊緣特征提取[J];海南師范學(xué)院學(xué)報(自然科學(xué)版);2003年03期

10 楊曉敏,羅立民,,韋鈺;血液白細(xì)胞計算機(jī)分類中的特征提取研究[J];應(yīng)用科學(xué)學(xué)報;1994年02期

相關(guān)會議論文 前10條

1 尚修剛;蔣慰孫;;模糊特征提取新算法[A];1997中國控制與決策學(xué)術(shù)年會論文集[C];1997年

2 潘榮江;孟祥旭;楊承磊;王銳;;旋轉(zhuǎn)體的幾何特征提取方法[A];第一屆建立和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會議(HHME2005)論文集[C];2005年

3 薛燕;李建良;朱學(xué)芳;;人臉識別中特征提取的一種改進(jìn)方法[A];第十三屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2006年

4 杜栓平;曹正良;;時間—頻率域特征提取及其應(yīng)用[A];2005年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2005年

5 魏明果;;方言比較的特征提取與矩陣分析[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會議論文集[C];2009年

6 林土勝;賴聲禮;;視網(wǎng)膜血管特征提取的拆支跟蹤法[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年

7 黃先鋒;韓傳久;陳旭;周劍軍;;運動目標(biāo)的分割與特征提取[A];全國第二屆信號處理與應(yīng)用學(xué)術(shù)會議專刊[C];2008年

8 秦建玲;李軍;;基于核的主成分分析的特征提取方法與樣本篩選[A];2005年中國機(jī)械工程學(xué)會年會論文集[C];2005年

9 劉紅;陳光

本文編號:2429488


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/huliyixuelunwen/2429488.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶37f8d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com