帶內(nèi)網(wǎng)絡(luò)遙測(cè)的非重疊網(wǎng)絡(luò)圖覆蓋算法
發(fā)布時(shí)間:2021-08-07 12:31
隨著各種云服務(wù)的部署增加,今天的數(shù)據(jù)中心網(wǎng)絡(luò)變得越來越大。隨著網(wǎng)絡(luò)規(guī)模的不斷擴(kuò)大,細(xì)粒度網(wǎng)絡(luò)監(jiān)控成為了網(wǎng)絡(luò)可靠性和閉環(huán)流量控制的先決條件。然而,由于控制平面和數(shù)據(jù)平面之間的連續(xù)交互以及有限的CPU能力,這種監(jiān)視機(jī)制是粗粒度的,并且導(dǎo)致在具有高密度數(shù)據(jù)中心網(wǎng)絡(luò)的現(xiàn)代網(wǎng)絡(luò)中無法很好地隨劇烈變化的通信動(dòng)態(tài)擴(kuò)展。為了增加可擴(kuò)展性,P4語言聯(lián)盟(P4.org)提出了帶內(nèi)網(wǎng)絡(luò)遙測(cè)(INT)機(jī)制,其提供實(shí)時(shí)數(shù)據(jù)平面監(jiān)視網(wǎng)絡(luò)。在本文中,我們提出了帶內(nèi)網(wǎng)絡(luò)遙測(cè)的概念,并提出使用路由路徑生成策略來解決問題。在WINT系統(tǒng)中,我們可以精確地控制每個(gè)探測(cè)路徑,從而可以為非重疊INT路徑生成一個(gè)多樣的INT路徑規(guī)劃算法來覆蓋整個(gè)網(wǎng)絡(luò)拓?fù)鋱D并確保路徑數(shù)最小,并對(duì)算法運(yùn)行是的復(fù)雜度進(jìn)行詳盡分析。在這里,我們首先提出一種基于深度優(yōu)先搜索(DFS)的簡單算法,該算法簡單且省時(shí)。其次,我們提出了基于歐拉路徑的算法來最優(yōu)地生成具有最小路徑數(shù)的非重疊INT路徑。為了實(shí)現(xiàn)更好的負(fù)載平衡,經(jīng)典數(shù)據(jù)中心中網(wǎng)絡(luò)拓?fù)涫羌嫒莸?并且存在多種多路徑拓?fù)淠J。因此INNT路徑非常適合在數(shù)據(jù)中心網(wǎng)絡(luò)中部署。另外,仿真結(jié)果表明歐拉算法的執(zhí)行時(shí)間...
【文章來源】:北京郵電大學(xué)北京市 211工程院校 教育部直屬院校
【文章頁數(shù)】:60 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
ABSTRACT
摘要
Chapter 1: Introduction
1.1 Research Background
1.2 Traditional networking
1.3 Software-Defined Network(SDN)
1.3.1 Control plane:
1.3.2 Data plane:
1.4 Active network
1.5 OpenFlow
1.6 Data plane programmability
1.7 Contribution
1.8 Summary
1.9 Thesis Organization
Chapter 2: Software-defined networking for computer networking
2.1 Overview of Software-Define Networking
2.1.1 Intelligence and speed
2.1.2 Easy network management:
2.1.3 Multi-tenancy:
2.1.4 Network Security
2.2 Traditional vs Software Define Networking
2.3 Software-Defined Networking Architecture
2.3.1 Data layer/Infrastructure layer
2.3.2 Control layer
2.3.3 Application Layer
2.4 Feature of SDN
2.5 Open Flow
2.6 Programmable Data plane
2.6.1 Protocol Oblivious Forwarding
2.6.2 P4 (Programming Protocol-Independent Packet Processing)
2.7 Network wide telemetry in Data center network
2.7.1 Tree based topologies
Basic tree
FatTree network topology
Leaf-Spine network topology
Summary
Chapter 3: Algorithm Design
3.1 System Background:
3.2 Challenging issue:
3.2.1 Telemetry overhead
3.2.2 Synchronized multi-path monitoring
3.3 Problem statement:
3.4 The Proposed Algorithms
3.5 Depth-First Search algorithm
3.6 Euler Trail based algorithm
3.6.1 Algorithm Description
3.6.2 Case study
3.6.3 Run-time complexity analysis:
3.6.4 Heuristic method for balanced path generation
Summary
Chapter 4: Evaluation
2.1 Experimental setting
2.2 Experimental Results
2.2.1 Number of generated INT path:
2.2.2 Balanced and Unbalanced Path Generation:
2.2.3 Telemetry Overhead:
2.2.4 Execution time of path planning algorithms
2.3 Network-wide telemetry in Data Center (DC) Network
Chapter 5: Conclusion
ACKNOWLEDGEMENT
REFERENCES
本文編號(hào):3327805
【文章來源】:北京郵電大學(xué)北京市 211工程院校 教育部直屬院校
【文章頁數(shù)】:60 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
ABSTRACT
摘要
Chapter 1: Introduction
1.1 Research Background
1.2 Traditional networking
1.3 Software-Defined Network(SDN)
1.3.1 Control plane:
1.3.2 Data plane:
1.4 Active network
1.5 OpenFlow
1.6 Data plane programmability
1.7 Contribution
1.8 Summary
1.9 Thesis Organization
Chapter 2: Software-defined networking for computer networking
2.1 Overview of Software-Define Networking
2.1.1 Intelligence and speed
2.1.2 Easy network management:
2.1.3 Multi-tenancy:
2.1.4 Network Security
2.2 Traditional vs Software Define Networking
2.3 Software-Defined Networking Architecture
2.3.1 Data layer/Infrastructure layer
2.3.2 Control layer
2.3.3 Application Layer
2.4 Feature of SDN
2.5 Open Flow
2.6 Programmable Data plane
2.6.1 Protocol Oblivious Forwarding
2.6.2 P4 (Programming Protocol-Independent Packet Processing)
2.7 Network wide telemetry in Data center network
2.7.1 Tree based topologies
Basic tree
FatTree network topology
Leaf-Spine network topology
Summary
Chapter 3: Algorithm Design
3.1 System Background:
3.2 Challenging issue:
3.2.1 Telemetry overhead
3.2.2 Synchronized multi-path monitoring
3.3 Problem statement:
3.4 The Proposed Algorithms
3.5 Depth-First Search algorithm
3.6 Euler Trail based algorithm
3.6.1 Algorithm Description
3.6.2 Case study
3.6.3 Run-time complexity analysis:
3.6.4 Heuristic method for balanced path generation
Summary
Chapter 4: Evaluation
2.1 Experimental setting
2.2 Experimental Results
2.2.1 Number of generated INT path:
2.2.2 Balanced and Unbalanced Path Generation:
2.2.3 Telemetry Overhead:
2.2.4 Execution time of path planning algorithms
2.3 Network-wide telemetry in Data Center (DC) Network
Chapter 5: Conclusion
ACKNOWLEDGEMENT
REFERENCES
本文編號(hào):3327805
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/3327805.html
最近更新
教材專著