面向空間相關(guān)性和加權(quán)評(píng)分效應(yīng)的情境感知Web服務(wù)推薦算法研究
文內(nèi)圖片:
圖片說明:天氣預(yù)報(bào)Web服務(wù)推薦場(chǎng)景圖
[Abstract]:In recent years, with the rapid development of the Internet and the popularity of mobile devices, a large number of similar functions and a wide range of Web services have appeared on the Internet. How to recommend personalized Web services to users has become one of the hot research issues in the field of service computing. The traditional Web service recommendation algorithm can not meet the diversified requirements of Web service recommendation. Therefore, context-aware Web service recommendation method considering time, space and other situational factors emerges as the times require. However, the existing context-aware Web service recommendation algorithms still have the following problems: first, the existing algorithms mainly focus on using space, time and other situational information to find users who are similar to the current user's situation or similar to the current Web service situation. However, the relationship between user situation and Web service situation has not yet been fully considered, which affects the preference of user Web service. Therefore, the recommended results of Web services are difficult to respond to the dynamic changes of users or service situations. Secondly, when using the "user-service" QoS value matrix to calculate the similarity between users or between services, the existing schemes treat the QoS values with different sizes equally, and generally ignore the significant influence of the maximum or minimal QoS values on the similarity between users or between services. Therefore, it is difficult to recommend services that significantly reflect the preferences of users. In order to solve the above problems, a context-aware Web service recommendation method (CASR-SCWRE algorithm) for spatial correlation and weighted scoring effect is proposed in this paper. The purpose of this method is to provide users with a personalized Web service recommendation mechanism: on the one hand, it is beneficial to mine the influence of the correlation between user situation and service situation on users' Web service preference, on the other hand, it ensures that the recommendation algorithm can significantly reflect the significant influence of different Qo S values on user similarity or service similarity. The main research contents of this paper are as follows: firstly, through the correlation between user space situation and service space situation, the influence of spatial correlation on user Web service preference is modeled, and the Web service call record consistent with user's current preference is obtained. Secondly, the similarity between users or services is calculated by modeling weighted scoring effect, and combined with the traditional time attenuation similarity solution model, a time attenuation model based on weighted scoring effect is proposed. Thirdly, based on the data filtered in the above two steps, the QoS value of a particular Web service to the current user is predicted by using Bayesian theorem. Finally, a series of large-scale experimental training and testing are carried out on WS-Dream datasets. The experimental results show that the CASR-SCWRE algorithm has higher accuracy of Web service recommendation than many comparative algorithms.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP393.09;TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李穎基,彭宏,鄭啟倫,曾煒;自動(dòng)分層推薦算法[J];計(jì)算機(jī)應(yīng)用;2002年11期
2 徐義峰;徐云青;劉曉平;;一種基于時(shí)間序列性的推薦算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2006年10期
3 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計(jì)算機(jī)應(yīng)用;2007年06期
4 張海玉;劉志都;楊彩;賈松浩;;基于頁(yè)面聚類的推薦算法的改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2008年09期
5 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
6 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國(guó)科技信息;2009年07期
7 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年19期
8 王文;;個(gè)性化推薦算法研究[J];電腦知識(shí)與技術(shù);2010年16期
9 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評(píng)價(jià)估計(jì)的混合推薦算法研究[J];微計(jì)算機(jī)信息;2010年36期
10 夏秀峰;代沁;叢麗暉;;用戶顯意識(shí)下的多重態(tài)度個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期
相關(guān)會(huì)議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個(gè)性化推薦算法[A];第二十四屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個(gè)性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集[C];2008年
3 秦國(guó);杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
4 周玉妮;鄭會(huì)頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動(dòng)商務(wù)個(gè)性化推薦系統(tǒng)[A];社會(huì)經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時(shí)推薦算法[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號(hào):2511583
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2511583.html