流行度演化分析與預(yù)測(cè)綜述
[Abstract]:Social networks produce a lot of information at an explosive growth rate every day, but people pay limited attention to the huge amount of information. What kind of information people pay attention to and how the degree of attention to information varies with time is the evolution of the popularity of information. The evolution of popularity reflects people's concerns and the flow and dissemination of information. Modeling and predicting the evolution of the popularity of network information is helpful to the study of information dissemination and human behavior, assists the monitoring of public opinion, and brings great application and commercial value. In recent years, researchers have made fruitful research results in this area, but there is still a lack of a summary of these results. This paper systematically reviews the main work of the evolution of network information popularity, and combs the analysis and prediction methods, models and development context. This paper first expounds the characteristics of epidemic evolution qualitatively and quantitatively, introduces how to quantify the many factors that affect the evolution of epidemic degree, classifies and summarizes them, and then classifies the existing modeling and prediction methods into three categories: based on early epidemic degree, based on influencing factors, based on cascade communication, from the aspects of principle, typical results, characteristic comparison, scope of application and so on, and then classifies the existing modeling and prediction methods into three categories: based on early epidemic degree, based on influencing factors, based on cascade communication, from the aspects of principle, typical results, characteristic comparison, scope of application and so on; Finally, according to the characteristics and practical needs of the current models and methods, the research direction of the evolution of popularity in the future is pointed out.
【作者單位】: 北京科技大學(xué)計(jì)算機(jī)與通信工程學(xué)院;
【分類號(hào)】:TP393;;TP391
【相似文獻(xiàn)】
相關(guān)會(huì)議論文 前2條
1 趙旭陽;許鳳蓮;李朝陽;高占國(guó);;滹沱河濕地景觀生態(tài)系統(tǒng)及其演化分析[A];2004·中國(guó)·武漢生態(tài)旅游論壇論文集[C];2004年
2 李杰;李濤;陳建兵;;隨機(jī)系統(tǒng)概率演化分析中的概率配置方法[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
相關(guān)重要報(bào)紙文章 前1條
1 華中科技大學(xué) 范如國(guó);基于復(fù)雜網(wǎng)絡(luò)理論的改革開放制度演化分析[N];光明日?qǐng)?bào);2008年
相關(guān)博士學(xué)位論文 前1條
1 鄧鐳;面向微博新媒體的公共事件及其社會(huì)輿論分析技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 敖其;基于分子網(wǎng)絡(luò)的疾病演化分析[D];西安電子科技大學(xué);2014年
2 羅例東;高速公路異常事件影響范圍演化分析與預(yù)測(cè)研究[D];重慶大學(xué);2015年
3 王曉宇;技術(shù)跨領(lǐng)域特征測(cè)度及知識(shí)媒介的跨領(lǐng)域演化分析[D];北京工業(yè)大學(xué);2016年
4 王佩瑤;產(chǎn)品空間網(wǎng)絡(luò)動(dòng)態(tài)社區(qū)發(fā)現(xiàn)及演化分析[D];大連理工大學(xué);2016年
5 閆志偉;企業(yè)自主創(chuàng)新理論的演化分析[D];山西大學(xué);2008年
6 楊維成;基于軟件倉(cāng)庫(kù)的源代碼演化分析[D];上海交通大學(xué);2014年
7 李新國(guó);服務(wù)業(yè)發(fā)展、演化分析及中國(guó)的發(fā)展與對(duì)策[D];山東大學(xué);2007年
8 王巍;基于關(guān)鍵詞和時(shí)間點(diǎn)的網(wǎng)絡(luò)話題演化分析[D];復(fù)旦大學(xué);2009年
9 宋揚(yáng);基于模型比較的軟件演化分析及同步演化方法[D];復(fù)旦大學(xué);2013年
10 盧鎖;基于復(fù)雜網(wǎng)絡(luò)的軟件系統(tǒng)演化分析[D];東北大學(xué);2012年
,本文編號(hào):2508146
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2508146.html