天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于數(shù)據(jù)挖掘的惡意網(wǎng)站檢測技術(shù)研究

發(fā)布時(shí)間:2019-06-25 10:03
【摘要】:隨著互聯(lián)網(wǎng)的發(fā)展,網(wǎng)絡(luò)安全日益受到人們關(guān)注。惡意網(wǎng)站攻擊事件的頻繁發(fā)生,給用戶帶來了巨大的財(cái)產(chǎn)損失,同時(shí)也嚴(yán)重威脅了個(gè)人甚至國家的安全。因此,建立一定的模型,并對惡意網(wǎng)站進(jìn)行識別和檢測具有非常重要的意義。目前國內(nèi)外很多學(xué)者對特征選擇方法進(jìn)行了改進(jìn),他們多集中在對主機(jī)特征與詞匯特征兩個(gè)方面進(jìn)行深入挖掘與改進(jìn),但是仍然存在準(zhǔn)確率與效率不高的情況。針對這些問題,在特征提取問題上,本文首先提出了建立易受攻擊網(wǎng)站名單的概念,并在此基礎(chǔ)上提出了基于加權(quán)距離的新特征提取方案。同時(shí)在數(shù)據(jù)挖掘算法上本文基于改進(jìn)的模糊C均值聚類算法對KNN模型進(jìn)行改進(jìn),提高了模型的效率。本文的研究工作主要包括:數(shù)據(jù)采集:本文對正常網(wǎng)站和惡意網(wǎng)站的數(shù)據(jù)分別進(jìn)行爬取,清洗,標(biāo)準(zhǔn)化處理與入庫操作,最終把數(shù)據(jù)放到MySQL數(shù)據(jù)庫中。特征提取:異于常見的網(wǎng)站白名單、網(wǎng)站黑名單的概念,文中把容易被攻擊的的網(wǎng)站進(jìn)行匯總,提出了建立易受攻擊網(wǎng)站名單的概念。同時(shí)惡意網(wǎng)站通常在正常網(wǎng)站的基礎(chǔ)上進(jìn)行一定程度的更改,根據(jù)更改類型設(shè)定不同的權(quán)重,提出了加權(quán)距離的概念,對任一輸入U(xiǎn)RL計(jì)算其與易受攻擊網(wǎng)站名單中URL間的最近加權(quán)距離距離,并把它作為新的特征。模型改進(jìn):本文首先對KNN算法和模糊C均值算法進(jìn)行了改進(jìn),針對FCM初始聚類中心不確定,容易陷入局部最優(yōu)的缺點(diǎn),本文提出了坐標(biāo)密度法,確定初始聚類中心。針對FCM算法的初始聚類個(gè)數(shù)隨機(jī)選取的問題提出了運(yùn)用K值和數(shù)據(jù)集個(gè)數(shù)來確定的方法,最終獲取樣本的聚類中心和聚類中心所在的簇。通過找到距離測試集距離最小的聚類中心所在簇,來確定測試集的類別。模型驗(yàn)證:本文采用了 LR模型,J48模型以及改進(jìn)的KNN模型,運(yùn)用WEKA對數(shù)據(jù)進(jìn)行分類。同時(shí)把加入新特征的數(shù)據(jù)和運(yùn)用原始特征的數(shù)據(jù)運(yùn)用數(shù)據(jù)挖掘算法進(jìn)行分類及準(zhǔn)確性對比,最終,分類結(jié)果得到一定提高。同時(shí)和其他文獻(xiàn)中方法進(jìn)行對比,發(fā)現(xiàn)特征具有較好的效果。
[Abstract]:With the development of the Internet, network security has been paid more and more attention. The frequent occurrence of malicious website attacks has brought huge property losses to users, but also seriously threatened the security of individuals and even countries. Therefore, it is of great significance to establish a certain model and identify and detect malicious websites. At present, many scholars at home and abroad have improved the feature selection methods, most of them focus on the host features and lexical features of the two aspects of in-depth mining and improvement, but there are still low accuracy and efficiency. In order to solve these problems, in this paper, the concept of establishing the list of vulnerable websites is proposed, and a new feature extraction scheme based on weighted distance is proposed. At the same time, in the data mining algorithm, this paper improves the KNN model based on the improved fuzzy C-means clustering algorithm, and improves the efficiency of the model. The research work of this paper mainly includes: data acquisition: this paper crawls, cleans, standardizes and stores the data of normal website and malicious website respectively, and finally puts the data into MySQL database. Feature extraction: different from the common concepts of website whitelist and website blacklist, this paper summarizes the vulnerable websites and puts forward the concept of establishing vulnerable website lists. At the same time, malicious websites usually change to a certain extent on the basis of normal websites. According to the different weights of the change types, the concept of weighted distance is put forward, and the nearest weighted distance between malicious websites and URL in the list of vulnerable sites is calculated for any input URL, and it is regarded as a new feature. Model improvement: in this paper, the KNN algorithm and fuzzy C-means algorithm are improved. In order to solve the problem that the initial clustering center of FCM is uncertain and easy to fall into local optimization, the coordinate density method is proposed to determine the initial clustering center. In order to solve the problem of random selection of the initial clustering number of FCM algorithm, a method is proposed to determine the K value and the number of data sets. Finally, the clustering center of the sample and the cluster in which the clustering center is located are obtained. By finding the cluster with the smallest distance from the test set, the category of the test set is determined. Model verification: in this paper, LR model, J48 model and improved KNN model are used to classify the data by WEKA. At the same time, the data with new features and the data using original features are compared with the data mining algorithm. Finally, the classification results are improved to a certain extent. At the same time, compared with other methods in the literature, it is found that the characteristics have better results.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP393.092;TP311.13

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 周慶平;譚長庚;王宏君;湛淼湘;;基于聚類改進(jìn)的KNN文本分類算法[J];計(jì)算機(jī)應(yīng)用研究;2016年11期

2 陳莊;劉龍飛;;融合域名注冊信息的惡意網(wǎng)站檢測方法研究[J];計(jì)算機(jī)光盤軟件與應(yīng)用;2015年01期

3 曹玖新;董丹;毛波;王田峰;;基于URL特征的Phishing檢測方法(英文)[J];Journal of Southeast University(English Edition);2013年02期

4 李洋;劉飚;封化民;;基于機(jī)器學(xué)習(xí)的網(wǎng)頁惡意代碼檢測方法[J];北京電子科技學(xué)院學(xué)報(bào);2012年04期

5 劉喜梅;雷達(dá);;一種改進(jìn)的模糊C均值聚類算法[J];青島科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期

6 胡明;劉嘉勇;劉亮;;一種基于代碼特征的網(wǎng)頁木馬改良模型研究[J];通信技術(shù);2010年08期

7 張孝飛;黃河燕;;一種采用聚類技術(shù)改進(jìn)的KNN文本分類方法[J];模式識別與人工智能;2009年06期

8 呂曉燕;羅立民;李祥生;;FCM算法的改進(jìn)及仿真實(shí)驗(yàn)研究[J];計(jì)算機(jī)工程與應(yīng)用;2009年20期

9 張慧哲;王堅(jiān);;基于初始聚類中心選取的改進(jìn)FCM聚類算法[J];計(jì)算機(jī)科學(xué);2009年06期

10 吳潤浦;方勇;吳少華;;基于統(tǒng)計(jì)與代碼特征分析的網(wǎng)頁木馬檢測模型[J];信息與電子工程;2009年01期

相關(guān)會議論文 前1條

1 劉琪;牛文靜;;正則表達(dá)式在惡意代碼動態(tài)分析中的應(yīng)用[A];2009通信理論與技術(shù)新發(fā)展——第十四屆全國青年通信學(xué)術(shù)會議論文集[C];2009年

相關(guān)博士學(xué)位論文 前2條

1 汪慶淼;基于目標(biāo)函數(shù)的模糊聚類新算法及其應(yīng)用研究[D];江蘇大學(xué);2014年

2 張健毅;大規(guī)模反釣魚識別引擎關(guān)鍵技術(shù)研究[D];北京郵電大學(xué);2012年

相關(guān)碩士學(xué)位論文 前2條

1 趙茉莉;網(wǎng)絡(luò)爬蟲系統(tǒng)的研究與實(shí)現(xiàn)[D];電子科技大學(xué);2013年

2 王穎杰;基于惡意網(wǎng)頁檢測的蜜罐系統(tǒng)研究[D];南京師范大學(xué);2008年

,

本文編號:2505599

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2505599.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a1d3c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
蜜桃臀欧美日韩国产精品| 亚洲另类欧美综合日韩精品| 国产成人精品一区二区三区| 亚洲淫片一区二区三区| 五月情婷婷综合激情综合狠狠| 色婷婷视频在线精品免费观看| 欧美多人疯狂性战派对| 人妻人妻人人妻人人澡| 国产又大又黄又粗的黄色| 国产精品蜜桃久久一区二区| 尤物天堂av一区二区| 偷拍偷窥女厕一区二区视频| 亚洲中文字幕剧情在线播放| 欧美熟妇一区二区在线| 最新69国产精品视频| 热久久这里只有精品视频| 亚洲另类欧美综合日韩精品| 亚洲色图欧美另类人妻| 亚洲深夜精品福利一区| 黄片免费观看一区二区| 年轻女房东2中文字幕| 91插插插外国一区二区婷婷| 91精品国自产拍老熟女露脸| 中文字幕无线码一区欧美| 91播色在线免费播放| 色婷婷激情五月天丁香| 日本免费一区二区三女| 久久精品福利在线观看| 亚洲国产欧美久久精品| 午夜色午夜视频之日本| 精品国产亚洲免费91| 亚洲av在线视频一区| 国产又爽又猛又粗又色对黄| 日韩日韩日韩日韩在线| 亚洲免费视频中文字幕在线观看 | 亚洲av在线视频一区| 午夜激情视频一区二区| 国产av一二三区在线观看| 精品伊人久久大香线蕉综合 | 亚洲国产精品国自产拍社区| 国内九一激情白浆发布|