面向云測試服務(wù)的資源分配策略研究
[Abstract]:Software testing faces many new challenges in cloud computing environment. Based on the investigation of the research status of cloud test services, this paper finds that reliable resource allocation strategy is needed to ensure the use of cloud test services for testing. At present, the research on cloud resource allocation strategy has some theoretical research and practical operation, but there is a lack of an overall resource allocation architecture from the perspective of cloud test users and cloud service providers at the same time. Based on the reference of cloud service model, a cloud test service model is designed in this paper. The model contains two components: one is to provide resource allocation policy-oriented resource allocators for cloud test users; the other is to provide cloud service providers with resource allocation policy-oriented resource allocators for resource efficiency allocation policies on the basis of meeting the availability needs of users. Then the resource allocation strategy is studied by using the method of predictive allocation, and the algorithm implemented by the two components is described. Resource allocator 1 uses BP neural network to predict the CPU utilization of cloud test virtual machines and the size of available memory, thus providing a strategy for the allocation of virtual machine resources. In the process of prediction, in order to improve the accuracy of resource prediction, an improved intelligent algorithm, particle swarm optimization algorithm, is introduced to optimize the initial threshold and weight of BP neural network. Finally, the effectiveness of the improved algorithm is proved by comparative experiments. On the basis that multiple cloud test virtual machines allocated by resource allocator 1 have satisfied the availability of resources, resource allocator 2 adopts genetic algorithm to minimize cloud server memory to realize the placement of cloud test virtual machines to cloud servers, thus providing another strategy for the allocation of virtual machine resources. In the process of allocation, the traditional genetic algorithm is easy to obtain the infeasible solution, and the single point cross repair, rotation mutation and external penalty function theory are introduced to improve the genetic algorithm. Finally, the feasibility of improving the optimization ability of the algorithm is proved by experiments.
【學(xué)位授予單位】:重慶郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP393.09;TP311.53
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔡琪;單冬紅;趙偉艇;;改進(jìn)粒子群算法的云計(jì)算環(huán)境資源優(yōu)化調(diào)度[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年01期
2 王剛剛;廖慶;徐玉蕊;劉樂;侯阿臨;;改進(jìn)型粒子群優(yōu)化算法的BP神經(jīng)網(wǎng)絡(luò)全息圖壓縮[J];吉林大學(xué)學(xué)報(bào)(信息科學(xué)版);2016年01期
3 張德慧;張德育;劉清云;呂艷輝;;基于粒子群算法的BP神經(jīng)網(wǎng)絡(luò)優(yōu)化技術(shù)[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年05期
4 宋巍;張春柳;鄔斌亮;;Web系統(tǒng)性能測試研究與實(shí)踐[J];計(jì)算機(jī)應(yīng)用與軟件;2015年03期
5 陳壽文;;基于質(zhì)心和自適應(yīng)指數(shù)慣性權(quán)重改進(jìn)的粒子群算法[J];計(jì)算機(jī)工程與應(yīng)用;2015年05期
6 張赫男;張紹文;;采用改進(jìn)的混合遺傳算法求解高校排課問題[J];計(jì)算機(jī)工程與應(yīng)用;2015年05期
7 徐生兵;;基于動(dòng)態(tài)調(diào)整慣性權(quán)重下改進(jìn)學(xué)習(xí)因子的粒子群算法[J];信息安全與技術(shù);2014年04期
8 盧輝斌;李丹丹;孫海艷;;PSO優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的混沌時(shí)間序列預(yù)測[J];計(jì)算機(jī)工程與應(yīng)用;2015年02期
9 肖云鵬;劉宴兵;;云計(jì)算關(guān)鍵技術(shù)與應(yīng)用展望[J];數(shù)字通信;2010年03期
10 溫艷冬;;軟件性能測試需求的獲取方法綜述[J];軟件工程師;2010年Z1期
,本文編號(hào):2502643
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2502643.html