天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于互信息與KNN的入侵檢測(cè)技術(shù)研究

發(fā)布時(shí)間:2019-04-22 12:14
【摘要】:網(wǎng)絡(luò)技術(shù)飛速發(fā)展,導(dǎo)致各種網(wǎng)絡(luò)安全問(wèn)題越來(lái)越嚴(yán)重,所需的安全防護(hù)措施也越來(lái)越重要。入侵檢測(cè)技術(shù)是一種基于預(yù)防的動(dòng)態(tài)安全防范措施,它一直是信息安全領(lǐng)域研究的熱點(diǎn),有著舉足輕重的地位。 本文針對(duì)傳統(tǒng)KNN算法學(xué)習(xí)效率低下的缺點(diǎn),提出一種快速KNN (F-KNN)算法。其主要作了以下三個(gè)方面的改進(jìn): 第一,刪減訓(xùn)練樣本庫(kù)。刪除訓(xùn)練集中的大量重復(fù)數(shù)據(jù),以減少算法學(xué)習(xí)過(guò)程中的計(jì)算量,從而提高學(xué)習(xí)效率。 第二,建立索引模型。隨機(jī)選取一個(gè)訓(xùn)練樣本作為基準(zhǔn)點(diǎn),計(jì)算其他訓(xùn)練樣本與該基準(zhǔn)點(diǎn)的距離,且由小到大進(jìn)行排序,得到一個(gè)有序線(xiàn)性表,并抽取有序線(xiàn)性表中間隔相等的樣本建立索引表,根據(jù)索引表和有序線(xiàn)性表快速查找待分類(lèi)測(cè)試樣本的k個(gè)最近鄰,以縮小查找范圍,從而提高學(xué)習(xí)效率。 第三,設(shè)緩存功能。對(duì)待分類(lèi)測(cè)試樣本時(shí),先與緩存的已分類(lèi)測(cè)試樣本比對(duì),若有相同,則直接賦予緩存樣本的類(lèi)標(biāo),若無(wú)相同,再行分類(lèi)學(xué)習(xí),從而提高學(xué)習(xí)效率。 本文選用KDD CUP99數(shù)據(jù)集作為實(shí)驗(yàn)數(shù)據(jù),首先對(duì)該數(shù)據(jù)集進(jìn)行預(yù)處理;然后使用基于互信息的特征約簡(jiǎn)算法進(jìn)行特征選擇;最后使用F-KNN算法對(duì)特征約簡(jiǎn)后的數(shù)據(jù)集進(jìn)行異常檢測(cè)。實(shí)驗(yàn)結(jié)果表明,F-KNN算法在不降低分類(lèi)精度的前提下,大幅度提高了分類(lèi)學(xué)習(xí)效率。
[Abstract]:With the rapid development of network technology, all kinds of network security problems become more and more serious, and the security protection measures are more and more important. Intrusion detection technology is a kind of dynamic security measures based on prevention. It has always been a hot spot in the field of information security and plays an important role in the field of information security. In this paper, a fast KNN (F-KNN) algorithm is proposed to overcome the disadvantage of low learning efficiency of traditional KNN algorithm. It mainly makes the following three aspects of improvement: first, delete the training sample database. In order to reduce the computational complexity in the learning process of the algorithm, a large number of duplicated data in the training set are deleted so as to improve the learning efficiency. Secondly, the index model is established. A training sample is randomly selected as the reference point, the distance between the other training samples and the reference point is calculated, and the order linear table is obtained from small to large, and the sample with equal interval in the ordered linear table is taken to set up the index table. According to the index table and the ordered linear table, k nearest neighbors of the test samples to be classified are quickly searched to reduce the search range and thus improve the learning efficiency. Third, set up cache function. When the classification test sample is treated, it is first compared with the cached classified test sample. If there is the same, the class label of the cache sample is directly assigned to the cache sample. If there is not the same, then the classification learning is performed, so as to improve the learning efficiency. In this paper, the KDD CUP99 data set is chosen as the experimental data, firstly, the data set is pre-processed, then the feature reduction algorithm based on mutual information is used for feature selection. Finally, the F-KNN algorithm is used to detect the anomaly of the reduced data set. The experimental results show that the F-KNN algorithm greatly improves the classification learning efficiency without reducing the classification accuracy.
【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TP393.08

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曹建軍;刁興春;杜瀊;王芳瀟;張瀟毅;;基于蟻群特征選擇的相似重復(fù)記錄分類(lèi)檢測(cè)[J];兵工學(xué)報(bào);2010年09期

2 竇東陽(yáng);楊建國(guó);李麗娟;趙英凱;;基于規(guī)則的神經(jīng)網(wǎng)絡(luò)在模式分類(lèi)中的應(yīng)用[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期

3 馬駿;;入侵檢測(cè)系統(tǒng)發(fā)展簡(jiǎn)述[J];電腦知識(shí)與技術(shù);2008年34期

4 李成云;支冬棟;;免疫算法在入侵檢測(cè)模型中的應(yīng)用研究[J];電腦知識(shí)與技術(shù);2011年19期

5 陸廣泉;謝揚(yáng)才;劉星;張師超;;一種基于KNN的半監(jiān)督分類(lèi)改進(jìn)算法[J];廣西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期

6 蔡賀;張睿;;k最近鄰域分類(lèi)算法分析與研究[J];甘肅科技;2012年18期

7 盧新國(guó),林亞平,陳治平;一種改進(jìn)的互信息特征選取預(yù)處理算法[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期

8 李凱齊;刁興春;曹建軍;李峰;;基于改進(jìn)蟻群算法的高精度文本特征選擇方法[J];解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年06期

9 徐峻嶺;周毓明;陳林;徐寶文;;基于互信息的無(wú)監(jiān)督特征選擇[J];計(jì)算機(jī)研究與發(fā)展;2012年02期

10 賈世國(guó);張昌城;;基于數(shù)據(jù)挖掘的網(wǎng)絡(luò)入侵檢測(cè)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J];計(jì)算機(jī)工程與應(yīng)用;2008年14期



本文編號(hào):2462823

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2462823.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)6f8f9***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com