面向智慧城市的網(wǎng)絡(luò)性能監(jiān)控及流量預(yù)測(cè)研究
[Abstract]:With the rapid development of Intenet, the network application continues to improve, the scope of application continues to expand, urban construction also ushered in the smart city this new development mode, the network equipment is scattered in every corner of the city. It brings great convenience to people's life. The increase of network equipment brings more and more pressure to network management. Since the emergence of the network, the network management system has iterated over several versions, and each generation of network management system introduced by the network provider has adapted to the needs of the time. With the advancement of the intelligent city process, There is an urgent need to develop a set of intelligent city-oriented network performance monitoring and traffic prediction system, which accords with the practical needs of smart city construction, provides theoretical support for intelligent city network construction, and promotes the continuous development of intelligent city construction. According to the requirement of network performance monitoring and network traffic prediction for smart city construction, a simulation study on network performance monitoring and network traffic prediction for smart city is proposed and implemented in this paper. In this paper, the realization of network performance monitoring system, based on SNMP,IPMI and other protocols for data acquisition module, to process the collected data, convenient for foreground pages to generate alarms, Network managers can configure the network data acquisition conditions in front of the front page through the configuration strategy, and put forward a formatted storage model for intelligent city-oriented network data acquisition. The architecture of the network performance monitoring model, the function of each module and the advantages of web as the monitoring system are described in detail. In the aspect of prediction and simulation of network traffic, after knowing the characteristics of genetic algorithm and the basic principle of RBF neural network in detail, this paper designs a train of thought to improve the overall performance of RBF neural network by using the improved genetic algorithm. To establish a network traffic prediction model, this model takes the factors that affect the network traffic as input and the network traffic as the output. The intelligent city-oriented network performance monitoring and traffic prediction system is designed and implemented in this paper. After collecting and inputting the historical network traffic data in the database, the system can achieve the desired results. Finally, the research results of this paper can be used as a model for network operators to provide visual network performance monitoring and network traffic prediction, and provide a theoretical basis for network management oriented to intelligent city construction.
【學(xué)位授予單位】:沈陽(yáng)理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP393.06
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何凱;;技術(shù)支撐智慧城市信息網(wǎng)絡(luò)建設(shè)的根本保證[J];中國(guó)新技術(shù)新產(chǎn)品;2016年18期
2 呂欣;韓曉露;李陽(yáng);畢鈺;;智慧城市網(wǎng)絡(luò)安全體系框架研究[J];信息安全研究;2016年09期
3 袁藝;;智慧城市的網(wǎng)絡(luò)安全隱患及對(duì)策[J];中國(guó)信息安全;2016年07期
4 趙婕;;基于SNMP協(xié)議的分布式計(jì)算機(jī)網(wǎng)絡(luò)監(jiān)控系統(tǒng)設(shè)計(jì)[J];自動(dòng)化與儀器儀表;2016年06期
5 呂欣;韓曉露;李陽(yáng);;智慧城市網(wǎng)絡(luò)安全保障評(píng)價(jià)體系研究[J];信息安全研究;2016年05期
6 王惠蒞;范科峰;上官曉麗;;智慧城市網(wǎng)絡(luò)安全標(biāo)準(zhǔn)化研究及進(jìn)展[J];信息安全研究;2016年05期
7 黃燕;;基于BP神經(jīng)網(wǎng)絡(luò)的故障預(yù)測(cè)研究[J];經(jīng)貿(mào)實(shí)踐;2016年05期
8 王惠蒞;;智慧城市網(wǎng)絡(luò)安全風(fēng)險(xiǎn)分析及其標(biāo)準(zhǔn)化研究[J];信息技術(shù)與標(biāo)準(zhǔn)化;2016年03期
9 陳桂龍;;智慧城市網(wǎng)絡(luò)安全的治理[J];中國(guó)建設(shè)信息化;2016年01期
10 王英博;閆吉府;李仲學(xué);;遺傳算法優(yōu)化徑向基神經(jīng)網(wǎng)絡(luò)的尾礦庫(kù)安全預(yù)測(cè)[J];計(jì)算機(jī)應(yīng)用與軟件;2015年03期
相關(guān)博士學(xué)位論文 前1條
1 牟洪波;基于BP和RBF神經(jīng)網(wǎng)絡(luò)的木材缺陷檢測(cè)研究[D];東北林業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 林川;基于SNMP/IPMI的數(shù)據(jù)采集框架的設(shè)計(jì)與實(shí)現(xiàn)[D];中國(guó)科學(xué)院研究生院(沈陽(yáng)計(jì)算技術(shù)研究所);2016年
2 程玲燕;基于SVM和RBF神經(jīng)網(wǎng)絡(luò)的鐵路貨運(yùn)市場(chǎng)預(yù)警方法研究[D];北京交通大學(xué);2016年
3 孫帥;基于RBF神經(jīng)網(wǎng)絡(luò)的減搖鰭模糊控制器設(shè)計(jì)[D];大連海事大學(xué);2016年
4 曾鈺;基于遺傳算法優(yōu)化的RBF神經(jīng)網(wǎng)絡(luò)在光伏發(fā)電MPPT中的應(yīng)用[D];湖南工業(yè)大學(xué);2015年
5 馬云龍;基于主成分分析的RBF神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)算法及其應(yīng)用[D];吉林大學(xué);2015年
6 何思露;基于支持向量機(jī)的網(wǎng)絡(luò)流量預(yù)測(cè)和資源調(diào)度[D];廣東工業(yè)大學(xué);2015年
7 肖瑞菊;基于智慧城市的電力通信流量預(yù)測(cè)模型研究[D];華北電力大學(xué);2015年
8 張文謙;基于蟻群算法優(yōu)化的小波神經(jīng)網(wǎng)絡(luò)流量預(yù)測(cè)模型研究[D];西安電子科技大學(xué);2014年
9 張希影;基于遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)股票價(jià)格預(yù)測(cè)[D];青島科技大學(xué);2014年
10 弭寶福;遺傳算法進(jìn)化策略的改進(jìn)研究[D];東北農(nóng)業(yè)大學(xué);2014年
,本文編號(hào):2453915
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2453915.html