天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

云計算環(huán)境下資源分配算法的研究

發(fā)布時間:2019-02-28 07:30
【摘要】:隨著計算機技術(shù)的革新與互聯(lián)網(wǎng)的飛速發(fā)展,云計算應(yīng)運而生。云計算是一種新興的商業(yè)計算模式,它利用成熟的虛擬化技術(shù)將大量的基礎(chǔ)設(shè)施資源集中起來,實現(xiàn)了數(shù)據(jù)中心資源的按需服務(wù)。在云計算中,由于資源具有動態(tài)性、異構(gòu)性、大規(guī)模性等特點,如何根據(jù)云計算的實際特點制定合適的資源分配策略是目前急需解決的問題。智能優(yōu)化算法由于其高度并行、自組織、自適應(yīng)等特性,已經(jīng)被廣泛用于解決云計算的資源分配問題,本文通過研究云計算下的資源分配問題,對現(xiàn)有的資源分配算法存在的問題進行了分析,主要進行了以下方面的研究工作: ①提出一種粒子群結(jié)合遺傳算法(PSO-GA)的云計算資源分配算法。傳統(tǒng)的的粒子群算法、遺傳算法在云計算資源分配過程中均容易陷入早熟收斂的缺陷,不能很好解決云計算下的資源分配。針對這一問題,提出PSO-GA資源分配算法,該算法在遺傳算法的基礎(chǔ)上通過引入種群分割、種群覆蓋的概念,并且將粒子群算法中的變異算子應(yīng)用到PSO-GA算法的變異過程中。實驗表明,PSO-GA算法能夠有效解決單一的遺傳算法和粒子群算法的早熟收斂的缺陷,提高最優(yōu)解收斂速度和算法執(zhí)行效率。 ②提出一種改進型人工魚群算法(IAFA)的云計算資源分配算法。在云計算資源分配過程中,在種群規(guī)模較大的情況下,PSO-GA算法收斂速度較慢,不能快速得到全局最優(yōu)解。為了解決這一問題,本文提出一種改進型人工魚群算法(IAFA),在原來行為的基礎(chǔ)上淘汰了隨機行為,增加了跳躍行為,促使了陷入局部最優(yōu)的人工魚跳出局部極值繼續(xù)搜索全局最優(yōu);引入生存周期和生存指數(shù)的概念,,節(jié)約了儲存空間,提高了算法的效率。實驗表明,IAFA算法能夠在種群規(guī)模較大的情況下快速收斂并得到全局最優(yōu)解。 ③擴展了云計算仿真模擬平臺CloudSim,對上文提出的算法進行仿真模擬。本文分析和研究了CloudSim的資源分配機制,對CloudSim平臺進行重編譯,在CloudSim上實現(xiàn)了PSO-GA、IAFA等算法的仿真程序,并對算法進行了模擬驗證和對比分析,實驗證明了上述兩種改進算法的有效性。
[Abstract]:With the innovation of computer technology and the rapid development of the Internet, cloud computing emerges as the times require. Cloud computing is a new business computing model, which uses mature virtualization technology to centralize a large number of infrastructure resources and realize on-demand service of data center resources. In cloud computing, due to the dynamic, heterogeneous, large-scale characteristics of resources, how to formulate appropriate resource allocation strategy according to the actual characteristics of cloud computing is an urgent problem to be solved at present. Intelligent optimization algorithm has been widely used to solve the resource allocation problem of cloud computing because of its highly parallel, self-organizing, adaptive and other characteristics. This paper studies the resource allocation problem in cloud computing. The existing problems of resource allocation algorithms are analyzed, and the main work is as follows: (1) A cloud computing resource allocation algorithm based on particle swarm optimization (PSO-GA) is proposed. Traditional particle swarm optimization (PSO) and genetic algorithm (GA) are prone to fall into premature convergence in the process of resource allocation in cloud computing, and can not solve the problem of resource allocation in cloud computing. In order to solve this problem, the PSO-GA resource allocation algorithm is proposed. Based on the genetic algorithm, the concept of population segmentation and population coverage is introduced, and the mutation operator in particle swarm optimization is applied to the mutation process of PSO-GA algorithm. Experiments show that PSO-GA algorithm can effectively solve the shortcomings of premature convergence of single genetic algorithm and particle swarm optimization algorithm, improve the convergence rate of the optimal solution and the efficiency of the algorithm. In this paper, an improved artificial fish swarm algorithm (IAFA) for cloud computing resource allocation is proposed. In the process of resource allocation in cloud computing, when the population size is large, the convergence rate of PSO-GA algorithm is slow, and the global optimal solution can not be obtained quickly. In order to solve this problem, an improved artificial fish swarm algorithm (IAFA),) is proposed in this paper, which eliminates random behavior and increases jump behavior on the basis of the original behavior. The artificial fish trapped in the local optimum jump out of the local extremum and continue to search for the global optimal; By introducing the concepts of life cycle and survival index, the storage space is saved and the efficiency of the algorithm is improved. The experimental results show that the IAFA algorithm can converge rapidly and obtain the global optimal solution when the population size is large. 3 extend the cloud computing simulation platform CloudSim, to simulate the algorithm proposed above. This paper analyzes and studies the resource allocation mechanism of CloudSim, recompiles the CloudSim platform, implements the simulation program of PSO-GA,IAFA and other algorithms on CloudSim, and makes simulation verification and comparative analysis of the algorithms. Experimental results show the effectiveness of the two improved algorithms.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP18;TP393.09

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 孫文新;齊名軍;;人工魚群優(yōu)化在云計算環(huán)境中任務(wù)調(diào)度算法[J];安徽農(nóng)業(yè)科學(xué);2012年11期

2 李曉磊,錢積新;基于分解協(xié)調(diào)的人工魚群優(yōu)化算法研究[J];電路與系統(tǒng)學(xué)報;2003年01期

3 孫健;賈曉菁;;Google云計算平臺的技術(shù)架構(gòu)及對其成本的影響研究[J];電信科學(xué);2010年01期

4 房秉毅;張云勇;程瑩;徐雷;;云計算國內(nèi)外發(fā)展現(xiàn)狀分析[J];電信科學(xué);2010年S1期

5 林軍青;林錦賢;;面向云計算的服務(wù)性能模型研究[J];電子設(shè)計工程;2011年19期

6 劉愉;趙志文;李小蘭;孔令榮;于淑環(huán);于妍芳;;云計算環(huán)境中優(yōu)化遺傳算法的資源調(diào)度策略[J];北京師范大學(xué)學(xué)報(自然科學(xué)版);2012年04期

7 田榮華;盧顯良;侯孟書;王曉斌;;P2P分布式存儲系統(tǒng)[J];計算機科學(xué);2007年06期

8 王文義;秦廣軍;王若雨;;基于粒子群算法的遺傳算法研究[J];計算機科學(xué);2007年08期

9 李喬;鄭嘯;;云計算研究現(xiàn)狀綜述[J];計算機科學(xué);2011年04期

10 劉萬軍;張孟華;郭文越;;基于MPSO算法的云計算資源調(diào)度策略[J];計算機工程;2011年11期



本文編號:2431620

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2431620.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶767f7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲中文字幕乱码亚洲| 日韩日韩日韩日韩在线| 欧美丰满人妻少妇精品| 欧美黑人黄色一区二区| 日韩精品一区二区三区射精| 久久经典一区二区三区| 国产美女网红精品演绎| 东京不热免费观看日本| 日韩性生活视频免费在线观看| 欧美午夜一级艳片免费看| 国产又色又爽又黄又免费| 91在线爽的少妇嗷嗷叫| 欧美日韩无卡一区二区| 日本在线视频播放91| 久久99青青精品免费| 国产盗摄精品一区二区视频| 日韩偷拍精品一区二区三区| 亚洲欧美日韩网友自拍| 日本不卡一区视频欧美| 亚洲综合伊人五月天中文| 黄片美女在线免费观看| 久久免费精品拍拍一区二区| 日韩精品小视频在线观看| 天堂网中文字幕在线视频| 日韩视频在线观看成人| 人妻一区二区三区多毛女| 福利视频一区二区在线| 99久久精品国产日本| 亚洲性日韩精品一区二区| 精品日韩av一区二区三区| 国产欧美日韩不卡在线视频| 亚洲国产性生活高潮免费视频| 99福利一区二区视频| 日韩性生活视频免费在线观看| 国产视频在线一区二区| 麻豆tv传媒在线观看| 精品视频一区二区不卡| 国产性情片一区二区三区| 亚洲一区二区福利在线| 日本一级特黄大片国产| 日本道播放一区二区三区|