云計算環(huán)境下資源分配算法的研究
[Abstract]:With the innovation of computer technology and the rapid development of the Internet, cloud computing emerges as the times require. Cloud computing is a new business computing model, which uses mature virtualization technology to centralize a large number of infrastructure resources and realize on-demand service of data center resources. In cloud computing, due to the dynamic, heterogeneous, large-scale characteristics of resources, how to formulate appropriate resource allocation strategy according to the actual characteristics of cloud computing is an urgent problem to be solved at present. Intelligent optimization algorithm has been widely used to solve the resource allocation problem of cloud computing because of its highly parallel, self-organizing, adaptive and other characteristics. This paper studies the resource allocation problem in cloud computing. The existing problems of resource allocation algorithms are analyzed, and the main work is as follows: (1) A cloud computing resource allocation algorithm based on particle swarm optimization (PSO-GA) is proposed. Traditional particle swarm optimization (PSO) and genetic algorithm (GA) are prone to fall into premature convergence in the process of resource allocation in cloud computing, and can not solve the problem of resource allocation in cloud computing. In order to solve this problem, the PSO-GA resource allocation algorithm is proposed. Based on the genetic algorithm, the concept of population segmentation and population coverage is introduced, and the mutation operator in particle swarm optimization is applied to the mutation process of PSO-GA algorithm. Experiments show that PSO-GA algorithm can effectively solve the shortcomings of premature convergence of single genetic algorithm and particle swarm optimization algorithm, improve the convergence rate of the optimal solution and the efficiency of the algorithm. In this paper, an improved artificial fish swarm algorithm (IAFA) for cloud computing resource allocation is proposed. In the process of resource allocation in cloud computing, when the population size is large, the convergence rate of PSO-GA algorithm is slow, and the global optimal solution can not be obtained quickly. In order to solve this problem, an improved artificial fish swarm algorithm (IAFA),) is proposed in this paper, which eliminates random behavior and increases jump behavior on the basis of the original behavior. The artificial fish trapped in the local optimum jump out of the local extremum and continue to search for the global optimal; By introducing the concepts of life cycle and survival index, the storage space is saved and the efficiency of the algorithm is improved. The experimental results show that the IAFA algorithm can converge rapidly and obtain the global optimal solution when the population size is large. 3 extend the cloud computing simulation platform CloudSim, to simulate the algorithm proposed above. This paper analyzes and studies the resource allocation mechanism of CloudSim, recompiles the CloudSim platform, implements the simulation program of PSO-GA,IAFA and other algorithms on CloudSim, and makes simulation verification and comparative analysis of the algorithms. Experimental results show the effectiveness of the two improved algorithms.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP18;TP393.09
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫文新;齊名軍;;人工魚群優(yōu)化在云計算環(huán)境中任務(wù)調(diào)度算法[J];安徽農(nóng)業(yè)科學(xué);2012年11期
2 李曉磊,錢積新;基于分解協(xié)調(diào)的人工魚群優(yōu)化算法研究[J];電路與系統(tǒng)學(xué)報;2003年01期
3 孫健;賈曉菁;;Google云計算平臺的技術(shù)架構(gòu)及對其成本的影響研究[J];電信科學(xué);2010年01期
4 房秉毅;張云勇;程瑩;徐雷;;云計算國內(nèi)外發(fā)展現(xiàn)狀分析[J];電信科學(xué);2010年S1期
5 林軍青;林錦賢;;面向云計算的服務(wù)性能模型研究[J];電子設(shè)計工程;2011年19期
6 劉愉;趙志文;李小蘭;孔令榮;于淑環(huán);于妍芳;;云計算環(huán)境中優(yōu)化遺傳算法的資源調(diào)度策略[J];北京師范大學(xué)學(xué)報(自然科學(xué)版);2012年04期
7 田榮華;盧顯良;侯孟書;王曉斌;;P2P分布式存儲系統(tǒng)[J];計算機科學(xué);2007年06期
8 王文義;秦廣軍;王若雨;;基于粒子群算法的遺傳算法研究[J];計算機科學(xué);2007年08期
9 李喬;鄭嘯;;云計算研究現(xiàn)狀綜述[J];計算機科學(xué);2011年04期
10 劉萬軍;張孟華;郭文越;;基于MPSO算法的云計算資源調(diào)度策略[J];計算機工程;2011年11期
本文編號:2431620
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2431620.html