面向跨媒體旅游大數(shù)據(jù)的個(gè)性化搜索和云服務(wù)系統(tǒng)實(shí)現(xiàn)
[Abstract]:With the rapid development of social networks, mass travel data are produced on the Internet, which leads to the problem of information overload. It takes a lot of effort for users to obtain effective information, which makes the demand for efficient search of tourism information more and more high. It is of great theoretical and practical significance to study the personalized search and cloud service system for cross-media tourism big data. The main work of this paper is as follows: (1) according to the characteristics of users sharing photo resources in the field of tourism, a hypergraph-based random walk travel image index method is proposed. This method uses hypergraphs to establish the relationship between tourist pictures and their additional information (such as shooting time, user tags, etc.), and fuses the different features of the pictures in the image index stage. The traditional visual lexical model is used to search the query. This method synthesizes the different features of tourist pictures, and avoids the computational time and storage space consumption caused by fusion in query stage and sorting stage. A more comprehensive and efficient method of image indexing is provided. (2) A method of personalized travel information search based on hypergraph random walk is proposed, which combines the features of tourism images. Using the underlying image features of the image itself and the additional information of the image label, geographical location, etc., using the method of hypergraph to construct the relationship between these feature information, A random walk method is used to search and sort hypergraph models. The method allows users to provide multiple types of cross-media information, such as text labels and images, as search samples, and can provide personalized search results for users according to personalized information provided by users. Experiments on Internet dataset show that compared with the general image search method with a single feature, the quality of search results of this method is improved. (3) aiming at the problem of huge data and real-time updating when big data searches tourist images, The training method of distributed visual vocabulary tree based on cloud computing and the method of image searching cloud service based on distributed visual vocabulary tree are proposed. The distributed visual vocabulary tree training method is based on the distributed K-means algorithm of MapReduce model, which is used to train and retrieve images in parallel. This distributed visual vocabulary tree training method can support the training of a large number of images in memory. The experimental results show that the training time and memory consumption of each node decrease linearly when the computing unit increases. It speeds up the establishment and search process of cross-media index. (4) A personalized search cloud service system for cross-media tourism big data is designed and developed. The system is divided into multi-feature index module, personalized search module and search cloud service module, which can provide users with reliable personalized travel data search cloud services.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.3;TP393.09
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 左欣;沈繼鋒;于化龍;高尚;徐丹;胡春龍;;基于哈希編碼學(xué)習(xí)的圖像檢索方法[J];江蘇科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年06期
2 宋天勇;趙輝;鄭山紅;王國春;;基于查詢-概念的用戶興趣模型構(gòu)建[J];吉林大學(xué)學(xué)報(bào)(信息科學(xué)版);2015年03期
3 李武軍;周志華;;大數(shù)據(jù)哈希學(xué)習(xí):現(xiàn)狀與趨勢[J];科學(xué)通報(bào);2015年Z1期
4 任樹懷;;LUCENE搜索算法剖析及優(yōu)化研究[J];圖書館雜志;2014年12期
5 楊昭;高雋;謝昭;吳克偉;;局部Gist特征匹配核的場景分類[J];中國圖象圖形學(xué)報(bào);2013年03期
6 徐磊;;基于內(nèi)容的大規(guī)模圖像檢索基本方法[J];科技信息;2013年08期
相關(guān)博士學(xué)位論文 前3條
1 蔣鍇;含地理位置信息的社交媒體挖掘及應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2014年
2 戴金波;基于視覺信息的圖像特征提取算法研究[D];吉林大學(xué);2013年
3 尹華罡;基于海量時(shí)空數(shù)據(jù)的路線挖掘與檢索[D];中國科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前3條
1 郭劍飛;基于LDA多模型中文短文本主題分類體系構(gòu)建與分類[D];哈爾濱工業(yè)大學(xué);2014年
2 葉君峰;基于圖像的多樣化景點(diǎn)搜索[D];上海交通大學(xué);2013年
3 李雪;旅游個(gè)性化搜索系統(tǒng)的研究與實(shí)現(xiàn)[D];北京郵電大學(xué);2013年
,本文編號:2429626
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2429626.html