基于效用的Web個(gè)性化服務(wù)模型
[Abstract]:The rapid development of modern electronic information technology makes the Internet information explosive growth. However, the rapid growth of information can not provide convenience to users. This barrier prevents users from finding the desired knowledge in the ocean of information. In order to solve this kind of problem, Web personalization service technology emerges as the times require. Web personalization service is a kind of service mode which combines Web technology and data mining technology to improve the service quality of Web site. Personalized service is a kind of service mode of "information seeking person". The Web mining technology is applied to the personalized service system. Combined with the Web text mining and Web domain ontology technology, the service quality of the Web site system is further improved. In recent years, with the joint efforts of scholars at home and abroad, Web personalized service technology has made a series of important scientific research results and formed a set of classic personalized service model. However, the theoretical system of personalized service still needs to be improved, such as "cold start" problem, how to update user interest model efficiently and accurately, and how to study personalized recommendation algorithm. In order to solve the above problems, this paper proposes a Web personalized service model based on utility based on the traditional personalized service model. The utility theory is introduced in this model, and a Utility based updating algorithm of user interest model is proposed to explore a high quality root updating algorithm of user interest model. For the common "cold start" problem in the traditional personalized service model system, this paper constructs the initial user interest model by introducing the three-party platform login module and using abundant user network resources on the tripartite platform. Enables the user to obtain the high quality personalization service quickly. Aiming at the shortcomings of the classical personalized recommendation algorithm-K-means algorithm, this paper proposes a user-interest double clustering algorithm based on cooperative clustering. The simulation results show that the model can provide high quality personalized service and meet the needs of Web site. It has high theoretical research value and practical significance.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP393.09;TP391.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陽曉萍;湯兵勇;宋月嬋;;個(gè)性化服務(wù)綜述[J];科技情報(bào)開發(fā)與經(jīng)濟(jì);2006年24期
2 王明文;付劍波;羅遠(yuǎn)勝;陸旭;;基于協(xié)同聚類的兩階段文本聚類方法[J];模式識(shí)別與人工智能;2009年06期
3 張娥,馮耕中,鄭斐峰;Web用戶訪問日志數(shù)據(jù)挖掘研究[J];情報(bào)雜志;2003年09期
4 王榮;李晉宏;宋威;;基于關(guān)鍵字的用戶聚類算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2012年09期
5 蔣盛益;麥智凱;龐觀松;吳美玲;王連喜;;微博信息挖掘技術(shù)研究綜述[J];圖書情報(bào)工作;2012年17期
6 王連喜;蔣盛益;龐觀松;吳美玲;;微博用戶關(guān)系挖掘研究綜述[J];情報(bào)雜志;2012年12期
7 張翔;陳勝勇;;基于改進(jìn)關(guān)聯(lián)規(guī)則的Web使用挖掘方法研究[J];微電子學(xué)與計(jì)算機(jī);2012年03期
8 王巧容;趙海燕;曹健;;個(gè)性化服務(wù)中的用戶建模技術(shù)[J];小型微型計(jì)算機(jī)系統(tǒng);2011年01期
9 葉紅云;倪志偉;倪麗萍;;一種檢測(cè)興趣漂移的圖結(jié)構(gòu)推薦系統(tǒng)[J];小型微型計(jì)算機(jī)系統(tǒng);2012年04期
10 盧露;朱福喜;;代表性博文選擇的博客興趣建模[J];小型微型計(jì)算機(jī)系統(tǒng);2011年10期
,本文編號(hào):2424946
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2424946.html