網(wǎng)頁(yè)視覺(jué)注意的相關(guān)研究
[Abstract]:As we all know, our human eyes receive a lot of visual information every day. With our efficient visual attention system, we can select and filter a large number of visual signals and remove the redundant parts. Pass the most important information through the nervous system to our brain for the next step. In modern times, many researchers are also trying to apply this efficient visual attention mechanism to electronic computers, in order to enable computers to simulate human visual attention systems, thus helping people to carry out higher levels. A more intelligent task. At present, visual attention prediction models for natural scenes have been proposed one after another, but the visual attention methods of non-natural scenes such as web pages are rarely studied. Because web pages are often a combination of pictures, text, trademarks, advertisements, and so on, they have more visual information than ordinary pictures. In addition, the way people browse the web is also different from that of ordinary pictures. This makes the traditional significant prediction models for natural scenes ineffective. Therefore, this paper focuses on the application of visual attention on web pages, and proposes a visual attention model for web pages. The main work of this paper is as follows: firstly, this paper proposes a WSP300 (Webpage Saliency Prediction database for the visual attention research of web pages. In order to explore the impact of different web pages on the eye watching area, we selected 116 materials for shopping, 105 for news and 79 for social and other categories. This database is an important supplement to the visual attention research database of current web pages, and provides the experimental basis and data support for the visual attention model of web pages established later in this paper. Secondly, this paper presents a prediction model of visual attention based on multi-feature fusion. According to the common features and differences between web pages and common images, the model firstly presents the bottom-up salient features suitable for web pages, and then obtains independent feature vectors by using feature mapping method. Then these feature vectors are trained by machine learning method, and the proposed features are fused effectively. Finally, the visual attention prediction map (salient image) suitable for web pages is obtained. Finally, a prediction model of visual attention based on convolution neural network is proposed. In this model, we consider that web pages are affected not only by bottom-up drivers, but also by top-down drivers. Therefore, we use full convolution neural network (Full Convolution Network,FCN) to extract advanced semantic information from web pages and combine them with bottom-up features. The validity of the model is also proved in the experiment of WSP300 database. To sum up, the first part of this paper is to establish a database of visual attention and fixation points for web pages, the other is to put forward two kinds of visual attention prediction models for web pages, and the experiments show that, The above two visual attention models are more effective than the current mainstream visual attention models in the prediction of visual attention on web pages.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP391.41;TP393.092
【相似文獻(xiàn)】
相關(guān)博士學(xué)位論文 前4條
1 方云華;基于功能性磁共振技術(shù)探討視覺(jué)注意功能與中醫(yī)體質(zhì)及年齡相關(guān)性的神經(jīng)機(jī)制研究[D];福建中醫(yī)藥大學(xué);2017年
2 王曉萌;基于特征融合的視覺(jué)關(guān)注算法研究[D];中國(guó)礦業(yè)大學(xué)(北京);2017年
3 葉志鵬;基于語(yǔ)義分析的場(chǎng)景分類(lèi)方法研究[D];哈爾濱工業(yè)大學(xué);2017年
4 伍博;基于顯著性的視覺(jué)目標(biāo)跟蹤研究[D];電子科技大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 李劍;網(wǎng)頁(yè)視覺(jué)注意的相關(guān)研究[D];北京郵電大學(xué);2017年
2 劉楚驍;基于代價(jià)敏感方法的垃圾網(wǎng)頁(yè)欺詐檢測(cè)[D];西南交通大學(xué);2017年
3 王大浩;網(wǎng)頁(yè)惡意代碼檢測(cè)技術(shù)研究與實(shí)現(xiàn)[D];北京郵電大學(xué);2017年
4 黃夢(mèng)賢;天津大學(xué)海洋科學(xué)與技術(shù)學(xué)院網(wǎng)頁(yè)翻譯實(shí)踐報(bào)告[D];天津大學(xué);2016年
5 騰飛;視覺(jué)元素在網(wǎng)頁(yè)設(shè)計(jì)中的創(chuàng)新與運(yùn)用[D];吉林藝術(shù)學(xué)院;2017年
6 陳鎮(zhèn);微信公眾號(hào)平臺(tái)中的視覺(jué)構(gòu)成優(yōu)化探析[D];湖北美術(shù)學(xué)院;2017年
7 胡金戈;基于視覺(jué)中心轉(zhuǎn)移的視覺(jué)顯著性檢測(cè)方法研究[D];西南大學(xué);2017年
8 屈安琪;自媒體視域下大學(xué)文化視覺(jué)表征的構(gòu)建研究[D];中國(guó)礦業(yè)大學(xué);2017年
9 陳麗麗;織物視覺(jué)遮蔽性測(cè)試方法研究[D];東華大學(xué);2017年
10 崔伯瑞;交互設(shè)計(jì)中的視覺(jué)工效研究[D];北京郵電大學(xué);2017年
,本文編號(hào):2393447
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2393447.html