天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

多子種群PSO優(yōu)化SVM的網(wǎng)絡(luò)流量預(yù)測

發(fā)布時間:2018-12-25 07:41
【摘要】:針對網(wǎng)絡(luò)流量的時變性和非平穩(wěn)性特點(diǎn),為提高網(wǎng)絡(luò)流量預(yù)測精度,提出一種"多子種群"機(jī)制的粒子群算法和支持向量機(jī)的網(wǎng)絡(luò)流量預(yù)測模型(Multi-Subpopulation Particle Swarm Optimization and Support Vector Machine,MSPSO-SVM).首先支持向量機(jī)(Support Vector Machine,SVM)參數(shù)編碼成粒子位置串,并根據(jù)網(wǎng)絡(luò)訓(xùn)練集的交叉驗證誤差最小作為參數(shù)優(yōu)化目標(biāo),然后通過粒子間信息交流找到最優(yōu)SVM參數(shù),并引入"多子種群"機(jī)制,解決粒子群優(yōu)化(Particle Swarm Optimization,PSO)算法的早熟停滯缺陷,最后根據(jù)最優(yōu)參數(shù)建立網(wǎng)絡(luò)流量預(yù)測模型,并采用實際網(wǎng)絡(luò)流量數(shù)據(jù)進(jìn)行仿真測試.結(jié)果表明,相對于其他預(yù)測模型,MSPSO-SVM可以獲得更優(yōu)的SVM參數(shù),網(wǎng)絡(luò)流量預(yù)測精度得以提高,更加適用于復(fù)雜多變的網(wǎng)絡(luò)流量預(yù)測.
[Abstract]:In view of the time-varying and non-stationary characteristics of network traffic, in order to improve the accuracy of network traffic prediction, a particle swarm optimization (PSO) algorithm and a support vector machine (Multi-Subpopulation Particle Swarm Optimization and Support Vector Machine,) network traffic prediction model based on "multi-subpopulation" mechanism are proposed. MSPSO-SVM) Firstly, support vector machine (Support Vector Machine,SVM) parameters are encoded into particle position strings, and the minimum cross-validation error of network training set is used as the parameter optimization objective, and then the optimal SVM parameters are found through the information exchange between particles. The "multi-sub-population" mechanism is introduced to solve the premature stagnation defect of particle swarm optimization (Particle Swarm Optimization,PSO) algorithm. Finally, the network traffic prediction model is established according to the optimal parameters, and the actual network traffic data are used for simulation test. The results show that compared with other prediction models, MSPSO-SVM can obtain better SVM parameters and improve the precision of network traffic prediction, which is more suitable for complex and changeable network traffic prediction.
【作者單位】: 華東交通大學(xué)信息工程學(xué)院;
【基金】:江西省教育廳科學(xué)技術(shù)研究項目資助(GJJ12686)
【分類號】:TP393.06

【參考文獻(xiàn)】

相關(guān)期刊論文 前6條

1 姜明;吳春明;張e,

本文編號:2390871


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2390871.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶68b0b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
精品日韩视频在线观看| 欧美一级日韩中文字幕| 亚洲高清欧美中文字幕| 日本亚洲欧美男人的天堂| 日韩精品视频香蕉视频| 日本成人三级在线播放| 蜜桃臀欧美日韩国产精品| 儿媳妇的诱惑中文字幕| 成人午夜视频精品一区| 99精品人妻少妇一区二区人人妻| 91人妻丝袜一区二区三区| 不卡视频在线一区二区三区| 亚洲一区二区三区四区性色av| 亚洲精品高清国产一线久久| 91偷拍裸体一区二区三区| 91超精品碰国产在线观看| 国产欧美日韩精品一区二| 久久精品国产99精品最新| 美女被啪的视频在线观看| 国产毛片对白精品看片| 精品高清美女精品国产区| 午夜精品福利视频观看| 老司机精品视频免费入口| 办公室丝袜高跟秘书国产 | 亚洲精品中文字幕在线视频| 欧美夫妻性生活一区二区| 婷婷亚洲综合五月天麻豆| 国产欧美一区二区三区精品视| 最新午夜福利视频偷拍| 国产不卡最新在线视频| 99久久国产精品成人观看| 亚洲中文字幕日韩在线| 亚洲欧洲一区二区综合精品| 欧美性猛交内射老熟妇| 国产精品不卡一区二区三区四区| 日韩人妻精品免费一区二区三区| 超碰在线免费公开中国黄片| 麻豆一区二区三区在线免费| 日韩国产传媒在线精品| 精品一区二区三区乱码中文| 亚洲综合伊人五月天中文|