面向社會(huì)網(wǎng)絡(luò)的隱私保護(hù)關(guān)鍵技術(shù)研究
[Abstract]:With the rapid development of network technology and social networking sites, such as Facebook, Twitter, and Renren, the number of user groups that make friends, contacts, and interact through social networking sites has increased rapidly. In order to tap the scientific and commercial value of social network, more and more researchers and developers focus their attention on the development of scientific research and application to the virtual world of social network, and social network analysis has become the sociology, geography, economics, The research focus of many subjects such as informatics and so on. Data mining and analysis of potential patterns based on social network data are more scientific and more effective than traditional relational data. However, the social network data contains sensitive privacy information, so privacy information in the social network needs to be protected during data distribution and sharing. In the social network, the privacy information type is more extensive, and the privacy leakage mode presents the diversity, so that the privacy leakage in the social network is prevented from being a great challenge. The protection of social network privacy is a hot issue to be solved in the field of data privacy protection. In this paper, the key technologies of the privacy protection of various social networks are deeply studied, including the protection of many kinds of privacy information such as the identity of the node, the sensitive relation and the sensitive attribute value, and the data availability of the anonymous graph is kept. The contribution of this paper mainly includes the following aspects: (1) In the aspect of node privacy protection, this paper studies the problem that an attacker can launch a node identification attack by using the edge weight in the weighted social network diagram as the background knowledge, thus leading to the problem of node privacy leakage. In this paper, a weighted graph node privacy protection model is proposed to prevent the node identification attack based on the edge weight, and a generalized anonymous method is designed to implement the weighted graph node privacy protection model. The experimental results show that the proposed weighted graph node privacy protection model can effectively prevent the node identification attack for the weighted graph, and the original structure property can be restored unbiasedly based on the anonymous graph. (2) In the aspect of the privacy protection of the sensitive relation, the attacker can use the link deduction technique to identify the sensitive relation, and study how to prevent the sensitive relation privacy leakage caused by the link deduction attack. Two link deduction attacks, single-step link deduction attacks, and cascade link deduction attacks are defined. In order to prevent the link deduction attack, an anti-deduction mechanism based on the tracing of the link world is proposed to cut off the deduction path of the sensitive link, and the anti-deduction algorithm is designed, and the data availability of the graph is maintained while the sensitive relation is protected. The experimental results show that the sensitive link anti-deduction mechanism can effectively protect the privacy of the sensitive relation in the social network and maintain the high availability of the published graph data. (3) In the aspect of the privacy protection of sensitive attribute values, consider how each node in the complex social network contains the personal information related to it, and study how to defend the personal information privacy leakage of the social network. In this paper, the k-aliasing model is designed to protect the privacy of personal information, and a security node-personal information mapping mechanism is proposed, and k-mapping is recorded. At the same time, the optimization technique is designed to improve the implementation efficiency and data availability of k-map. The experiment shows that the proposed k-mapping method reduces the personal information loss and similar information loss caused by the anonymous process while protecting the personal information privacy, so that the anonymous graph data has high query accuracy. (4) In keeping the data availability of graph, how to keep the reachability between nodes in the process of anonymity. In this paper, a reachability-preserving-graph anonymity algorithm (RPA algorithm) is proposed. The basic idea of the RPA algorithm is to group the nodes and to adopt the greedy strategy for anonymity, so as to reduce the loss of reachability information in the anonymous process. In order to improve the efficiency of the performance of the RPA algorithm, it is proposed to use the reachable interval to effectively evaluate the anonymous loss caused by the edge adding operation; secondly, by constructing the candidate neighbor index, the anonymity process of the RPA to each node is accelerated. Through a large number of experimental analysis, the anonymous map generated by the RPA algorithm maintains the inter-node reachability, so that the anonymous graph has good data availability in the aspect of reachability query. and (5) realizing the social network data security release prototype demonstration system SNSPDEMO. The SNSPDEMO system can carry out security detection on the social network for different privacy leakage types, and visually display the information of the node and the side with the privacy leakage through the graphical interface; The SNSPDEMO system integrates the social network privacy protection technology in this paper, so as to generate a secure social network diagram that provides the corresponding privacy protection, and display the graph modification operation made by the system through the graphic interface display system, and compare the difference between the original and the safety diagram. In conclusion, based on the potential threats and challenges in the social network privacy protection, this paper studies the key technologies of the social network privacy protection, such as the node privacy protection, the privacy protection of the sensitive relation, the privacy protection of the sensitive attribute values, the maintenance of the security drawing availability, etc., so as to provide a foundation for providing more comprehensive and perfect protection for social network privacy information.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP393.08
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李學(xué)聚;;新時(shí)期讀者隱私保護(hù)探析[J];科技情報(bào)開(kāi)發(fā)與經(jīng)濟(jì);2006年13期
2 管重;;誰(shuí)偷窺了你的隱私[J];數(shù)字通信;2007年15期
3 孔為民;;大學(xué)圖書(shū)館與隱私保護(hù)[J];科技情報(bào)開(kāi)發(fā)與經(jīng)濟(jì);2007年26期
4 尹凱華;熊璋;吳晶;;個(gè)性化服務(wù)中隱私保護(hù)技術(shù)綜述[J];計(jì)算機(jī)應(yīng)用研究;2008年07期
5 高楓;張峰;周偉;;網(wǎng)絡(luò)環(huán)境中的隱私保護(hù)標(biāo)準(zhǔn)化研究[J];電信科學(xué);2013年04期
6 高密;薛寶賞;;我的電腦信息 隱私保護(hù)很強(qiáng)大[J];網(wǎng)友世界;2010年11期
7 ;為自己的電子商務(wù)設(shè)計(jì)隱私保護(hù)[J];個(gè)人電腦;2000年07期
8 ;隱私保護(hù)的10個(gè)準(zhǔn)則[J];個(gè)人電腦;2000年07期
9 岑婷婷;韓建民;王基一;李細(xì)雨;;隱私保護(hù)中K-匿名模型的綜述[J];計(jì)算機(jī)工程與應(yīng)用;2008年04期
10 鄭悅;;猶抱隱私半遮面[J];中國(guó)計(jì)算機(jī)用戶;2008年14期
相關(guān)會(huì)議論文 前10條
1 鄭思琳;陳紅;葉運(yùn)莉;;實(shí)習(xí)護(hù)士病人隱私保護(hù)意識(shí)和行為調(diào)查分析[A];中華護(hù)理學(xué)會(huì)第8屆全國(guó)造口、傷口、失禁護(hù)理學(xué)術(shù)交流會(huì)議、全國(guó)外科護(hù)理學(xué)術(shù)交流會(huì)議、全國(guó)神經(jīng)內(nèi)、外科護(hù)理學(xué)術(shù)交流會(huì)議論文匯編[C];2011年
2 孫通源;;基于局部聚類和雜度增益的數(shù)據(jù)信息隱私保護(hù)方法探討[A];中國(guó)水利學(xué)會(huì)2013學(xué)術(shù)年會(huì)論文集——S4水利信息化建設(shè)與管理[C];2013年
3 張亞維;朱智武;葉曉俊;;數(shù)據(jù)空間隱私保護(hù)平臺(tái)的設(shè)計(jì)[A];第二十五屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(一)[C];2008年
4 公偉;隗玉凱;王慶升;胡鑫磊;李換雙;;美國(guó)隱私保護(hù)標(biāo)準(zhǔn)及隱私保護(hù)控制思路研究[A];2013年度標(biāo)準(zhǔn)化學(xué)術(shù)研究論文集[C];2013年
5 張鵬;于波;童云海;唐世渭;;基于隨機(jī)響應(yīng)的隱私保護(hù)關(guān)聯(lián)規(guī)則挖掘[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
6 桂瓊;程小輝;;一種隱私保護(hù)的分布式關(guān)聯(lián)規(guī)則挖掘方法[A];2009年全國(guó)開(kāi)放式分布與并行計(jì)算機(jī)學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2009年
7 俞笛;徐向陽(yáng);解慶春;劉寅;;基于保序加密的隱私保護(hù)挖掘算法[A];第八屆全國(guó)信息隱藏與多媒體安全學(xué)術(shù)大會(huì)湖南省計(jì)算機(jī)學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文集[C];2009年
8 李貝貝;樂(lè)嘉錦;;分布式環(huán)境下的隱私保護(hù)關(guān)聯(lián)規(guī)則挖掘[A];第二十二屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2005年
9 徐振龍;郭崇慧;;隱私保護(hù)數(shù)據(jù)挖掘研究的簡(jiǎn)要綜述[A];第七屆(2012)中國(guó)管理學(xué)年會(huì)商務(wù)智能分會(huì)場(chǎng)論文集(選編)[C];2012年
10 潘曉;郝興;孟小峰;;基于位置服務(wù)中的連續(xù)查詢隱私保護(hù)研究[A];第26屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(A輯)[C];2009年
相關(guān)重要報(bào)紙文章 前10條
1 記者 李舒瑜;更關(guān)注隱私保護(hù)和人格尊重[N];深圳特區(qū)報(bào);2011年
2 荷蘭鹿特丹醫(yī)學(xué)中心博士 吳舟橋;荷蘭人的隱私[N];東方早報(bào);2012年
3 本報(bào)記者 周靜;私密社交應(yīng)用風(fēng)潮來(lái)襲 聚焦小眾隱私保護(hù)是關(guān)鍵[N];通信信息報(bào);2013年
4 獨(dú)立分析師 陳志剛;隱私管理應(yīng)歸個(gè)人[N];通信產(chǎn)業(yè)報(bào);2013年
5 本報(bào)記者 朱寧寧;商業(yè)利益與隱私保護(hù)需立法平衡[N];法制日?qǐng)?bào);2014年
6 袁元;手機(jī)隱私保護(hù)萌發(fā)商機(jī)[N];證券日?qǐng)?bào);2014年
7 王爾山;跟隱私說(shuō)再見(jiàn)[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2008年
8 記者 武曉黎;360安全瀏覽器推“隱私瀏覽”模式[N];中國(guó)消費(fèi)者報(bào);2008年
9 早報(bào)記者 是冬冬;“美國(guó)隱私保護(hù)法律已過(guò)時(shí)”[N];東方早報(bào);2012年
10 張曉明;隱私的兩難[N];電腦報(bào);2013年
相關(guān)博士學(xué)位論文 前10條
1 孟祥旭;基于位置的移動(dòng)信息服務(wù)技術(shù)與應(yīng)用研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
2 蘭麗輝;基于向量模型的加權(quán)社會(huì)網(wǎng)絡(luò)發(fā)布隱私保護(hù)方法研究[D];江蘇大學(xué);2015年
3 柯昌博;云服務(wù)組合隱私分析與保護(hù)方法研究[D];南京航空航天大學(xué);2014年
4 李敏;基于位置服務(wù)的隱私保護(hù)研究[D];電子科技大學(xué);2014年
5 陳東;信息物理融合系統(tǒng)安全與隱私保護(hù)關(guān)鍵技術(shù)研究[D];東北大學(xué);2014年
6 張柯麗;信譽(yù)系統(tǒng)安全和隱私保護(hù)機(jī)制的研究[D];北京郵電大學(xué);2015年
7 Kamenyi Domenic Mutiria;[D];電子科技大學(xué);2014年
8 孫崇敬;面向?qū)傩耘c關(guān)系的隱私保護(hù)數(shù)據(jù)挖掘理論研究[D];電子科技大學(xué);2014年
9 劉向宇;面向社會(huì)網(wǎng)絡(luò)的隱私保護(hù)關(guān)鍵技術(shù)研究[D];東北大學(xué);2014年
10 張坤;面向多租戶應(yīng)用的云數(shù)據(jù)隱私保護(hù)機(jī)制研究[D];山東大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 鄒朝斌;SNS用戶隱私感知與自我表露行為的關(guān)系研究[D];西南大學(xué);2015年
2 李汶龍;大數(shù)據(jù)時(shí)代的隱私保護(hù)與被遺忘權(quán)[D];中國(guó)政法大學(xué);2015年
3 孫琪;基于位置服務(wù)的連續(xù)查詢隱私保護(hù)研究[D];湖南工業(yè)大學(xué);2015年
4 尹惠;無(wú)線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合隱私保護(hù)技術(shù)研究[D];西南交通大學(xué);2015年
5 王鵬飛;位置服務(wù)中的隱私保護(hù)技術(shù)研究[D];南京理工大學(xué);2015年
6 顧鋮;基于關(guān)聯(lián)規(guī)則的隱私保護(hù)算法研究[D];南京理工大學(xué);2015年
7 崔堯;基于匿名方案的位置隱私保護(hù)技術(shù)研究[D];西安工業(yè)大學(xué);2015年
8 畢開(kāi)圓;社會(huì)網(wǎng)絡(luò)中用戶身份隱私保護(hù)模型的研究[D];大連海事大學(xué);2015年
9 黃奚芳;基于差分隱私保護(hù)的集值型數(shù)據(jù)發(fā)布技術(shù)研究[D];江西理工大學(xué);2015年
10 高超;具有隱私保護(hù)意識(shí)的大樣本雙盲隨機(jī)對(duì)照試驗(yàn)數(shù)據(jù)管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];山東大學(xué);2015年
,本文編號(hào):2386696
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2386696.html